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Genetic factors of vitamin D3 deficiency  

and their clinical significance 

Objective: to analyze the available literature data on genetic polymorphisms 
that affect the metabolism of vitamin D3 and its concentration in blood se-
rum, with an emphasis on the latest experimental and clinical data. 
Material and methods. A search and analysis of scientific papers and re-
view articles on the effect of genetic polymorphisms in genes (GC, CYP2R1, 
CYP27A1, DHCR7, VDR) on the metabolism of vitamin D3 and on the sub-
sequent realization of its pleiotropic effects was carried out. 
Results. The role of hereditary factors in changes in serum indices of vita-
min D3 is 23-80%, along with indicators such as the UV index, skin insola-
tion, nutritional route of administration, or with drugs. The review analyzed 
data on the genetic polymorphisms of the GC (DBP), CYP24A1, CYP2R1, 
CYP27B1, VDR, NADSYN1 / DHCR7 genes, which are involved in the me-
tabolism of vitamin D3 and their association with blood vitamin D3, and ana-
lyzed the relationship between vitamin D3 and genetic polymorphisms. The 
very state of hypovitaminosis D3 increases the likelihood of developing dis-
eases such as type 2 diabetes mellitus, cardiovascular disease, and hyper-
tension. 
Conclusion. Knowledge of hereditary risk factors for low levels of vitamin 
D3 can be of great practical importance for the personalization of therapeutic 
and preventive measures. 
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itamin D3 and its role in various 
pathological processes are currently 
being actively studied. According to 

the latest clinical recommendations of the 
Endocrinological Society, in 40-60% of the 
world's population, the level of provision 
with vitamin D3 is regarded as insufficient 
[1]. 

Vitamin D3 - cholecalciferol - is synthe-
sized in the malpigian and basal layers of 
the epidermis of the skin with the active 
participation of 7-dehydrocholesterol as a 
result of the non-enzymatic, ultraviolet-
dependent photolysis reaction. The activity 

of vitamin D3 formation directly depends on 
the ultraviolet index and is inversely related 
to the degree of skin pigmentation. In the 
epidermis of the skin, cholecalciterol binds 
to vitamin D-binding protein transports 
(VDBP), and 70% of it passes from the 
bloodstream to the liver, and the other part 
enters the fat cells, where the formation of 
a vitamin D3 depot occurs [2]. 

In Kupffer liver cells, under the influence 
of the membrane enzyme of the cyto-
chrome P450 family, 25-hydroxylase, the 
gene-controlled (CYP3A4) cholecalciferol 
and ergocalciferol are hydroxylated and an 
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active metabolite of 25(OH)D (25-
hydroxyvitamin D – calcidiol). Recent stud-
ies of the pleiotropic effects of vitamin D3 
show that P-450 isoenzymes: CYP2C9 and 
CYP2D6 are involved in this reaction [3]. 
More than 90% of vitamin D3 is bound to 
VDBP, which in turn is bound to serum al-
bumin. A person has studied 3 main vari-
ants of VDBP (Gc1F, C2, and Gc1S), 
which differ in their affinity for vitamin D3. 

Polymorphism of the above options dif-
fers in persons of different nationalities and 
ethnic groups. For example, the Gc1F vari-
ant is more common in individuals with an 
African genealogy, the predominance of a 
high affinity Gc1F phenotype with a high 
affinity is revealed, and with a homozygous 
genotype, the VDBP level was only half its 
level in whites, in which the variant pre-
vailed Gc1S. At the second stage of me-
tabolism, transport proteins 25(OH)D are 
transported to the kidneys. The D3/VDBP 
complex interacts with proximal tubule cell 
receptors - megaline and cubilin, which re-
absorb vitamin D3 from glomerular filtrate, 
D3 hydroxylation occurs with the participa-
tion of the mitochondrial cytochrome P450, 
1a-hydroxylase enzyme, which is controlled 
by CYP27B1 and 24-hydroxylase, which 
forms a biologically highly active metabolite 
D3 - calcitriol (1.25(OH)2D [4, 5]. 

At the gene level, active metabolites of 
vitamin D3 bind to specific receptor pro-
teins - vitamin D receptor (VDR). The com-
plex D3(VDR) has a specific deoxyribonu-
cleic acid (DNA) binding domain. During 
the interaction of the active form of vitamin 
D3(VDR) complex with the chromatin of 
regulatory DNA regions, a VDR-DNA com-
pound is formed, as a result of which DNA 
transcription is selectively stimulated. This 
process leads to the biosynthesis of new 
mRNA molecules and the translation of 
specific proteins that are involved in the 
formation of a physiological response [9-
12]. 

Studies of the pleiotropic effects of vita-
min D3 indicate the inverse correlation be-
tween low levels of vitamin D3 and the 
prevalence of cardiovascular diseases 
(CVD), as well as the development of cer-
tain cardiometabolic risk factors such as 

diabetes mellitus, dyslipidemia, hyperten-
sion and metabolic syndrome [13]. 

It was found that a decrease in vitamin 
D3 levels already in childhood is associat-
ed with high risks of CVD, including high 
blood pressure, a decrease in high density 
lipoproteins, and an increase in the con-
centration of parathyroid hormone. The 
above changes can potentiate the devel-
opment of CVD in young people [14]. Vita-
min D3 deficiency contributes to the devel-
opment of atherosclerosis, which contrib-
utes to endothelial dysfunction, the for-
mation of foam cells and the proliferation of 
smooth muscle cells. 

The antihypertensive properties of vita-
min D3 include suppression of the renin-
angiotensin-aldosterone system, renopro-
tective effects, direct effects on endothelial 
cells and calcium metabolism, inhibition of 
vascular smooth fiber cell growth, preven-
tion of secondary hyperparathyroidism and 
a beneficial effect on cardiovascular risk 
factors. 

Vitamin D3 also affects the glycemic pro-
file, lipid metabolism, and insulin secretion, 
which allows us to believe that there is a 
relationship between vitamin D3 deficiency 
and metabolic syndrome. In deficit correc-
tion, other indicators should also be taken 
into account, such as the level of phos-
phates, parathyroid hormone, renin, and 
fibroblasts [15]. The active metabolite of 
vitamin D3, calcitriol, realizes its endocrine, 
paracrine, and autocrine biological effects 
by binding to the VDR [16, 17]. Vitamin D 
receptors are located: endothelial, pancre-
atic islet cells, hematopoietic cells, cardiac 
and skeletal muscle cells, monocytes, neu-
rons, T-lymphocytes, placental cells, etc., 
which confirms the pleiotropic effects of vit-
amin D3 [18]. 

According to the results of the study us-
ing genome-wide association study 
(GWAS), genes were identified, mutations 
in which can affect the concentration of vit-
amin D3: GC (VDBP) – a gene that en-
codes a protein that binds to Vitamin D3; 
CYP2R1 is a gene that controls the activity 
of microsomal enzymes, CYP27A1 is a 
gene that encodes mitochondria 25-
hydroxylase, DHCR7 is a gene that con-
trols the activity of 7 dehydrocholesterol 



reductase [19]. Genomic effects of vitamin 
D3 are realized through the corresponding 
receptors VDR, the detection of polymor-
phism of which affects the realization of 
biological effects of vitamin D3 [20, 21]. 
According to various estimates, the role of 
inherited factors in the change in serum D3 
indices is from 23-80% [22-24]. 

In one of the meta-analyzes of data from 
15 GWAS studies, among 733 996 studied 
Europeans (USA, Canada and European 
countries) and studied the effect of muta-
tions of 3 genes (GC, DHCR7 / NADSYN1 
and CYP2R1), on the level of vitamin D3 
with reliability fluctuations (from p = 4.99 × 
10-9 to p = 1.9 × 10-10), an association of 
serum vitamin D3 values with 18 single nu-
cleotide polymorphisms (SNP) in regions 
with above-mentioned genes (rs2282679, 
rs3755967, rs17467825, rs1155563, 
rs2298850, rs7041 for GC gene; 
rs12785878, rs7944926, rs12800438, 
rs3794060, rs4945008, rs4944957 for gene 
DHCR7 / NADSYN1 and rs10741657, 
rs2060793, rs1993116, rs12794714, 
rs10500804, rs7116978 for CYP2R1 gene) 
[25]. In another meta-analysis of data from 
21 studies, a significant dependence of cir-
culating vitamin D3 indices on polymor-
phisms was revealed: rs4588 and rs7041 in 
the GC gene, rs10735810 of the VDR gene 
and rs10877012 of the CYP27B1 gene 
[26]. 

In a Danish study that examined the ef-
fect of genetic polymorphisms on serum 
levels of vitamin D3 among children (n = 
344) and adults (n = 414), an association of 
vitamin levels with a number of polymor-
phisms in the genes CYP2R1, CYP24A1, 
DHCR7 / NADSYN1, was revealed. GC, 
VDR. The largest number of genetic poly-
morphisms was found in the GC gene. A 
significant (p = 0.01 - p <0.0001) decrease 
in the concentrations of vitamin 25(OH)D 
(by 9.1-24.4%) was detected in children 
and adults with rs16846876 polymorphism 
(haplo- type TT), rs12512631 (haplotype 
TT), rs17467825 (haplotype GG), 
rs2282679 (haplotype CC), rs842999 (hap-
lotype CC), rs4588 (haplotype AA), 
rs222020 (haplotype CC). Similar results 
were obtained in the analysis of polymor-
phisms and the CYP2R1 gene [27]. 

A survey of 1605 Latin American women 
found that two polymorphisms of the GC 
gene (rs7041 and rs2282679) and one of 
the CYP2R1 gene (rs2060793) have a sig-
nificant effect on vitamin 25(OH)D levels. 
Each of the above polymorphisms influ-
enced from 0.6–3.5% on fluctuations in the 
concentrations of vitamin 25(OH)D [28]. 

There is data on the dependence of the 
efficacy of prescribing Vitamin D3 prepara-
tions on the presence of genetic polymor-
phisms. In 1787 examined US residents 
aged 45-75 years, it was found that an in-
crease in vitamin D3 levels with vitamin D3 
intake of 1000 IU / day and calcium car-
bonate (1200 mg / day) depended on 
rs10766197 polymorphisms (CYP2R1 
gene), rs6013897 (CYP24A1 gene) and 
rs7968585 (VDR gene) [29]. 

People with genetic risk factors for vita-
min D3 deficiency need higher doses of 
vitamin supplements. According to the 
study, among women over 70 who took vit-
amin D3 at a dose of 800 IU / day for whom 
there were genetic risk factors, only 50% 
reached an adequate level of vitamin D3 in 
the blood serum, then among people with a 
more favorable genetic background - in 
77% of cases, an increase in the level of 
vitamin D3 was achieved (p <0.05) [30]. 

A correlation was revealed between the 
rs2228570 polymorphism located in exon 2 
of the VDR gene and containing 2 alleles, 
C and T, with the level of vitamin D3 in the 
blood among Europeans (Great Britain) 
[31, 32]. According to another study con-
ducted in Tehran, it was revealed that 
rs2228570 polymorphism is associated 
with vitamin D3 deficiency in patients who 
had cardiovascular diseases [33]. In anoth-
er study, genetic characteristics were re-
vealed among the inhabitants of the Rus-
sian Arctic compared with Europeans. 
Among the population of the Arctic region, 
the frequency of occurrence of the C allele 
rs2228570 of the VDR gene was higher 
than that of the newcomer population, and 
amounted to 71.1%, while the frequency of 
occurrence in Europeans was 57.8%. An 
analysis of the results revealed a statistical-
ly significant relationship between the C 
allele of the rs2228570 polymorphism of 
the VDR gene and vitamin D3 deficiency 
[34]. A similar association between the 
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presence of a dominant T allele and vita-
min D3 level was found during examination 
of other groups of healthy and sick individ-
uals [35–39]. 

According to a study in Southeast China, 
it was found that polymorphisms in the 
genes (GC, CYP3A4, CYP24A1 and 
NADSYN1 / DHCR7) involved in the me-
tabolism of vitamin D3 have associations 
with levels of vitamin D3 in blood serum 
among pregnant women [40]. 

In another genome study (GWAS), 
among 4501 among the European popula-
tion taken from 5 cohorts, SNP in the 
genes were identified. An analysis of poly-
morphisms of 3 genes revealed that with 
SNP levels 25 there were significant asso-
ciations of SNP rs2282679, rs7041, 
rs1155563 (GC gene), rs3829251, 
rs1790349,11234027 (DHCR7 / NADSYN1 
gene), rs206079 and rs1993116 (CYP2R1 
gene). The polymorphism rs2282679 of the 
GC gene (p = 1.8 × 10-49) had a pro-
nounced relationship with indices 25(OH)D. 
With all this, the presence of its allele was 
interrelated with a low level of vitamin 
25(OH)D.  

The set of differences between the aver-
age levels of 25(OH)D between the carriers 
of two copies of the minor allele (genotype 
CC) and the rest (genotypes AC and AA) 
ranged from -6.4% to -34.4% (median -
18.3%). When compared with the normal 
type (AA) of the GC gene, heterozygous 
individuals (AS) had an almost 2 times 
higher risk (odds ratio = 1.83) of vitamin D3 
deficiency (level 25(OH)D <25 nmol / L). It 
was found that the rs11234027 polymor-
phism in the DHCR7 / NADSYN1 gene also 
affects the concentration of D3. The minor 
hapotype (AA) of this polymorphism re-
duced the levels of vitamin D3 by 7.3-

24.9% (on average - by 9.5%). In this case, 
the haplotype AA rs1993116 of the 
CYP2R1 gene (frequency of the A allele in 
the population is 0.39) increased the con-
centration of 25(OH)D by 12.7–20.0% [30]. 

Conclusion 
The role of hereditary factors in chang-

ing the serum indices of vitamin D3 is 23-
80%, along with indicators such as the UV 
index, insolation of the skin, nutritional 
route or with drugs. The review analyzed 
data on the genetic polymorphisms of the 
GC (DBP), CYP24A1, CYP2R1, CYP27B1, 
VDR, NADSYN1 / DHCR7 genes, which 
are involved in the metabolism of vitamin 
D3 and their associations with blood vita-
min D3 level, and analyzed the relationship 
between vitamin D3 deficiency and genetic 
polymorphisms. The very state of D3 hypo-
vitaminosis increases the likelihood of de-
veloping diseases such as type 2 diabetes 
mellitus, cardiovascular disease, and hy-
pertension. Knowledge of hereditary risk 
factors for low levels of vitamin D3 can be 
of great practical importance for the per-
sonalization of therapeutic and prophylactic 
measures. 
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