Ministry of Health of the Russian Federation Federal State Budgetary Educational Institution Higher education "DAGESTAN STATE MEDICAL UNIVERSITY"

(FSBEI HE DSMU of the Ministry of Health of Russia)

APPROVES

Vice-Rector for Academic Affairs Doctor of Medical Sciences, Professor R.M. Ragimov Parunue "01" 07 2022

WORK PROGRAM OF THE DISCIPLINE "IMMUNOLOGY"

Discipline index – **B1. Q.2 6** Direction of training (specialty) - **31.05.01 General Medicine** Level of higher education **specialist** Qualification of the graduate - **medical doctor** Faculty **of Medical** Department of **Microbiology**, **Virology and Immunology** Form **of full-time** education course - **2** semester - **IV** Total labor intensity **3 z.u./ 108 hours** Lectures - **18 hours** Practical (seminar) classes - **54 hours** Independent work - **36 hours** Form of control credit in the **IV** semester

Makhachkala 2022

The work program of the discipline "Immunology" was developed in accordance with the Federal State Educational Standards of Higher Education in the direction of training (specialty) 31.05.01 General Medicine, approved by the order of the Ministry of Education and Science of the Russian Federation No. 988 of August 12, 2020.

The work program of the discipline was approved at the meeting of the department

of "29" June 2022 Minutes No. 18

The work programme has been ag	eed upon:	
1. Director of NMB DSMU	Jadlig	_ Musaeva V.R.
2. MR KKO	May	_Karimova A.M.
3. Dekan		_ Savzhikhanov R.T.

Head of the Department - Doctor of Biological Sciences, Professor S.M. Omarova Cramper

Developer(s) of the work program:

- Omarova S.M. Doctor of Biological Sciences, Professor, Head of the Department of Microbiology, Virology and Immunology
- 2. Isaeva R.I. Associate professor of the Department of Microbiology, Virology and Immunology
- Saidova B.M. Associate professor of the Department of Microbiology, Virology and Immunology

Reviewers:

- 1. Saidov M.Z. Associate professor, training directorof the Department pathological physiology
- Korkmasova M.A. Associate professor of the Department of Microbiology, Virology and Immunology

I. THE PURPOSE AND OBJECTIVES OF MASTERING THE DISCIPLINE

Purpose: formation of students' modern ideas about the structure and function of the immune system, the nature of immunopathology in patients of different ages, etiology, pathogenesis, methods of clinical, instrumental and laboratory diagnostics, as well as treatment and prevention of immunodeficiency states and allergopathology.

Tasks:

- formation of knowledge about the structure and function of the human immune system, its age characteristics, cellular and molecular mechanisms of development and functioning of the immune system, the main stages, types, genetic control of the immune system from theveta, methods of immunodiagnostics;

- formation of knowledge and skills in the application and evaluation of the results of laboratory research methods in immunodeficiency states, allergic and other immune-mediated diseases;

- formation of knowledge about primary immunodeficiencies, HIV infection, AIDS and other secondary immunodeficiency states;

- formation of knowledge about blood groups and methods fordetermining the gram upp affiliation of ABO and Rh;

- formation of knowledge about hypersensitivity, its classification according to Coombs-Jell, the etiology and pathogenesis of I-V types of hypersensitivity, the principles of laboratory diagnostics;

- formation of knowledge about transplantation immunity, the principles of selecting a donor and recipient, graft rejection reactions.

- Formation of knowledge about tolerance and autoimmunity.

- formation of knowledge about antitumor immunity.

II. PLANNED RESULTS OFTRAINING IN THE DISCIPLINE Competencies formed in the process of studying the discipline

Competence code and name (or parts of it)	Code and name of the competency achievement indicator		
	al Competencies (GPC)		
GPC-5 Is able to assess morpho-functional,	ID-1 GPC-5 Evaluates morpho-functional		
physiological states and pathological	processes in physiological conditions		
processes in the human body to solve			
professional problems			
know: systematics, classification, structure, physiology, genetics of the immune system; basic			
patterns and mechanisms of development o	patterns and mechanisms of development of the immune response, the role of innate and		
acquired immunity in physiological immune reactions, ways of implementing the immune			
response in the human body outside pathole	ogical conditions; the influence of specific and		
nonspecific factors on the morphofunctional development and physiological processes of the			
immune system of the human body in different age periods.			
be able to: identify and analyze the patterns of indicators of immune status in the norm in			
different age groups; conduct immunoprophy	lactic measures among the population in order to		

create active acquired immunity; **possess:** knowledge in the field of immunology, molecular and cellular immunology and is able to apply them in the study of the body's response in response to a viral infection, the mechanisms

of formation of an antiviral immune response; on the national vaccination calendar.

ID-2	GPC-5	Evaluates	morpho-functional
proces	ses in pat	thological co	onditions

know: systematics, classification, structure, pathology, genetics of the immune system; basic patterns and mechanisms of development of the immune response, the role of innate and acquired immunity in the development of the infectious process, ways of implementing the immune response in the human body; the influence of specific and nonspecific factors on the morphofunctional state and pathological processes of the immune system of the human body in different age periods;

be able to: identify and analyze patterns of changes in immune status indicators in various immunopathologic conditions; conduct immunological methods for diagnosing immunodeficiency states and infectious diseases;

possess: skills in assessing and interpreting the results of immunological research methods in the diagnosis of infectious diseases.

III. PLACE OF DISCIPLINE IN THE STRUCTURE OF THE EDUCATIONAL PROGRAM

The discipline "Immunology" refers to the mandatory part B1.O.26 according to the curriculum of the specialty 31.05.01 General Medicine.

The antecedents, on which the discipline "Immunology" is directly based, are "History of Medicine", "Latin Language", "Biology, Ecology", "Histology, Embryology, Cytology", "Biological Chemistry", "Pharmacology", "Pathological Physiology".

The discipline "Immunology" is fundamental for the study of the following disciplines: "Clinical Immunology", "Public Health and Public Health", "Military Hygiene", "Clinical Laboratory Diagnostics", "General Hygiene, Social and Hygienic Monitoring", "Infectious Diseases, Parasitology".

The development of competencies in the process of studying the discipline contributes to the formation of knowledge, skills and abilities that allow for effective work on the implementation of the following types of tasks of professional activity:

Medical activities:

- Prevention of the occurrence of diseases among the population through preventive and anti-epidemic measures;

- diagnostics of diseases and pathological conditions;

- Participation in the provision of emergency medical care to children in conditions requiring urgent medical intervention;

Research:

- analysis of scientific literature and official statistical reviews, participation in statistical analysis and public presentation of the results obtained;

- participation in solving certain research and scientific-applied problems in the field of health care in diagnosis, treatment, medicalrehabilitation and prevention.

IV. SCOPE OF DISCIPLINE AND TYPES OF EDUCATIONAL WORK The total labor intensity of the discipline is 3 credits

Type of educational work	Total hours	Semester
		4
Contact work of students with the teacher	72	72
Classroom classes (total)	72	72
Including:		
Lectures (L)	18	18
Practical exercises (PE)	54	54
Laboratory classes (LC)		
Independent work of the student (IWS)	36	36
Type of intermediate attestation (offset)	Credit	Credit
Total labor intensity:		
hours of credits	108	108
nours of credits	3	3

V. CONTENTOF THE WORK PROGRAM OF DISCIPLINES Sections of the discipline and competence that are formed during their study

5.1.

N⁰	Namingof the discipline	Contents	Supervised
Section	section		competency code
			(or part of it)
1	2	3	4
1	2 Immunity. Types of immunity.	3 The subject and tasks of immunology. The connection of the subject with other disciplines. History of Immunology. The term "immunity" (from the Latin. immunitas (exemption from something, immunity) was used already in the Middle Ages when freeing, for example, peasants from taxes, and in our time it has found use among diplomats (diplomatic immunity, i.e. immunity). The main function of the immune system is to recognize the antigen, i.e. to establish its genetic foreignness, genetic difference from its own antigens, and a complex of reactions and mechanisms inherent in the immune system, to eliminate its influence on the biological processes occurring in the body, in order to preserve homeostasis, the structural and functional integrity of the body, and also to preserve the specific memory of this antigen,	•

I		
	In the modern sense, immunology is	
	not only a science that studies	
	protection against infectious	
	diseases.	
	Immunology is one of the branched	
	sciences, has many directions and	
	sections that have formed almost	
	into independent disciplines,	
	covering both theoretical,	
	fundamental, and preventive and	
	clinical problems of medicine:	
	vaccinology, allergology, immuno-	
	oncology, immunopathology,	
	reproduction immunology,	
	transplantation immunology,	
	immunopharmacology, clinical and	
	environmental immunology.	
	Types of immunity are as follows.	
	1. Hereditary immunity (congenital,	
	or species) is detected already at	
	birth and is a genotypic trait that is	
	inherited. It can be species and	
	individual.	
	Species immunity is the immunity	
	of one species of animals or humans	
	to microorganisms that cause	
	diseases in other species. It is	
	genetically determined in humans	
	as a biological species, that is, a	
	person does not suffer from	
	zoonotic diseases.	
	2. Acquired immunity is called	
	such immunity of the human body	
	to infectious agents, which is	
	formed in the process of its	
	individual development and is	
	characterized by strict specificity. It	
	is always individual, not inherited,	
	and can be natural and artificial.	
	Artificial acquired immunity	
	occurs during immunization	
	(vaccination). Artificial immunity	
	can be created actively and	
	passively. Active is formed by the	
	introduction of antigenic drugs,	
	vaccines, toxoids. Passive immunity	
	is formed by the introduction of	
	ready-made serums and	
	immunoglobulins, i.e. ready-made	
	antibodies.	
	Non-specific protection factors	
	(species immunity) include:	

			<u>ر</u>
		mechanical (anatomical: skin and	
		mucous membranes of the	
		respiratory tract, gastrointestinal	
		tract, atrial fibrillation and mucus of	
		the respiratory tract), barrier	
		function of lymph nodes; normal	
		microflora of the body;	
		physicochemical (enzymes,	
		primarily the gastrointestinal tract;	
		reaction of the medium; organic	
		acids, etc.), which ensure the	
		destruction of antigens; nonspecific	
		immunobiological protection	
		carried out by normal immune cells	
		and humoral components	
		(phagocytosis, normal killers,	
		complement system, inflammation,	
		interferon, coagulation inhibitors,	
		fibronectin, fever, main	
		histocompatibility system).	
		Specific factors (acquired	
		immunity) include: antibody	
		formation; immune phagocytosis	
		and killer function of immune	
		macrophages and lymphocytes;	
		immediate hypersensitivity;	
		delayed type hypersensitivity;	
		immunological memory;	
		immunological tolerance.	
		Both of those and other defense	
		factors function in interaction and	
		constitute a single system of	
		protection of the body from	
		antigens. At the same time, they can	
		be included in the protection	
		process not at the same time and not	
		all at once. Depending on the nature	
		of the antigenic effect, one or more	
		forms of response may be leading.	
2.	Immune system.	The immune system is a set of	ID-1 GPC-5
	Immunocompetent cells.	organs, tissues and cells that ensure	
		the cellular-genetic constancy of the	
		body. The human immune system	
		provides specific protection of the	
		body from genetically foreign	
		molecules and cells, including	
		infectious agents - bacteria, viruses,	
		fungi, protozoa.	
		The principles of antigenic (genetic)	
		purity are based on the recognition	
		of "own - alien" and are largely due	
		to the system of genes and	
		· · · · · · · · · · · · · · · · · · ·	

		•
	glycoproteins (products of their	
	expression) - the main	
	histocompatibility complex (MHC),	
	in humans often called the HLA	
	system (human leukocyte antigens).	
	Central and peripheral organs of the	
	immune system	
	Central (primary): bone marrow -	
	hematopoietic organ, thymus gland	
	or thymus, lymphoid tissue of the	
	intestine are places of	
	differentiation of lymphocyte	
	populations.	
	Neriferic (secondary): spleen,	
	lymph nodes, tonsils, accumulations	
	of lymphoid tissue in their own	
	layer of mucous membranes of the	
	intestinal type (lymphoid tissue	
	associated with the intestines and	
	bronchi) the organs of immunity are	
	populated by B- and T-lymphocytes	
	from the central organs of the	
	immune system; after contact with	
	the antigen in these organs,	
	lymphocytes are included in	
	recirculation.	
	Progenitor cells of	
	immunocompetent cells are	
	produced by the bone marrow.	
	Some descendants of stem cells	
	become lymphocytes. Lymphocytes	
	are divided into two classes - T and	
	B.	
	In the bone marrow, progenitor	
	cells mature for various populations	
	of B-lymphocytes and	
	macrophages, specific immune reactions occur in it. It serves as the	
	main source of serum	
	immunoglobulins. In birds,	
	immature B cells migrate to	
	Fabricius' pouch (bursa), where they	
	reach maturity.	
	The spleen is colonized by	
	lymphocytes in the late embryonic	
	period and after birth. In the white	
	pulp there are thymus-dependent	
	and thymus-independent zones,	
	which are populated by T-B	
	lymphocytes.	
	Mature B- and T-lymphocytes	
	colonize peripheral lymph nodes.	
•	X X	·

Lymphocytes enter the lymph nodes	
through afferent lymphatic vessels.	
The movement of lymphocytes	
between tissues, the bloodstream	
and lymph nodes allows antigen-	
sensitive cells to detect antigen and	
accumulate in those places where	
the immune reaction occurs, and the	
spread of memory cells and their	
descendants throughout the body	
allows the lymphoid system to	
organize a generalized immune	
response.	
Lymphocytes have a common	
morphological characteristic, but	
their functions, superficial CD	
(from cluster differentiation)	
markers, individual (clonal) origin,	
are different.	
According to the presence of	
superficial CD markers,	
lymphocytes are divided into	
functionally different populations	
and subpopulations, primarily into	
T- (thymus-dependent, which have	
undergone primary differentiation	
in the thymus) lymphocytes and B-	
(bursa-dependent, maturing in the	
bag of Fabricius in birds or its	
analogues in mammals - in the bone	
marrow in humans) lymphocytes.	
Localization. T-lymphocytes arise	
in the embryonic thymus. In the	
postembryonic period after	
maturation, T-lymphocytes settle in	
T-dependent zones of peripheral	
lymphoid tissue (periarticular in the	
white pulp of the spleen and	
paracortical zones of the lymph	
nodes). After stimulation	
(activation) of a certain antigen, T-	
lymphocytes are converted into	
large transformed T-lymphocytes, from which the executive link of T	
cells then arises. Functions	
T-lymphocytes recognize the	
antigen-representing (A) cells	
processed and presented on the	
surface. They are responsible for	
cellular immunity, cell-type	
immune responses. Individual	
subpopulations help B lymphocytes	
supportations help D Tymphocytes	

respond to T-dependent antigens by	
producing antibodies (regulate the	
activity of B cells). They are	
involved in delayed (IV) type	
hypersensitivity.	
The formation and maturation of	
immunocompetent cells is carried	
out in the central organs of	
immunity (for T-lymphocytes - in	
the thymus). T-lymphocyte	
progenitor cells enter the thymus,	
where pre-T cells (thymocytes)	
mature, proliferate and undergo	
differentiation into separate	
subclasses as a result of interaction	
with epithelial and dendritic stroma	
cells and exposure to hormone-like	
polypeptide factors secreted by	
thymus epithelial cells (alpha1-	
thymosin, thymopoietin, thymulin,	
etc.).	
When differentiated, T lymphocytes	
acquire a certain set of membrane	
CD markers. T cells are	
subpopulated according to their	
function and CD marker profile.	
T lymphocytes recognize antigens	
using two types of membrane	
glycoproteins, T cell receptors (a	
family of Ig-like molecules) and	
CD3, which are non-covalently	
linked together. Their receptors,	
unlike antibodies and B lymphocyte	
receptors, do not recognize freely	
circulating antigens. They	
recognize the peptide fragments	
presented to them by A cells	
through a complex of foreign	
substances with the corresponding	
protein of the main	
histocompatibility system of class 1	
and 2.	
The main function of B cells is	
differentiation as a result of	
antigenic stimulation into plasma	
cells that produce antibodies, i.e.	
effector participation in humoral	
immune reactions. There are several	
subtypes of B-lymphocytes.	
The formation of B-cells in the fetus	
occurs in the liver, in the future - in	
the bone marrow.	

3.	Antigons Classification	Antigens have a number of	ID-1 GPC-5
5.	Antigens. Classification.	e	ל-טיט ו-עו
	Properties.	1 1	
		antigenicity, specificity and immunogenicity.	
		Antigens can be proteins,	
		polysaccharides and nucleic acids in	
		combination with each other or	
		lipids. Antigens are any structures	
		that carry signs of genetic	
		foreignness and are recognized as	
		such by the immune system. Protein	
		antigens, including bacterial	
		exotoxins, viral neuraminidase,	
		have the greatest immunogenicity.	
		Diversity of the concept of	
		"antigen". Antigens are divided into	
		complete (immunogenic), always	
		exhibiting immunogenic and	
		antigenic properties, and	
		incomplete (haptens), unable to	
		independently cause an immune	
		response.	
		Haptens have antigenicity, which	
		determines their specificity, the	
		ability to selectively interact with	
		antibodies or lymphocyte receptors,	
		to be determined by immunological	
		reactions. Haptens can become	
		immunogenic when bound to an	
		immunogenic carrier (e.g., a	
		protein), i.e., become complete.	
		The hapten part is responsible for	
		the specificity of the antigen, the	
		carrier (more often protein) is	
		responsible for immunogenicity.	
		Immunogenicity depends on a	
		number of reasons (molecular	
		weight, mobility of antigen	
		molecules, shape, structure, ability to change). Of significant	
		importance is the degree of	
		heterogeneity of the antigen, i.e.	
		foreignness to a given species	
		(macroorganism), the degree of	
		evolutionary divergence of	
		molecules, the uniqueness and	
		unusualness of the structure.	
		Foreignness is also determined by	
		the molecular weight, size and	
		structure of the biopolymer. its	
		macromolecularity and rigidity of	
		structure.	
•	·	•	

The antigenicity of proteins is a	
manifestation of their foreignness,	
and its specificity depends on the	
amino acid sequence of proteins,	
secondary, tertiary and quaternary	
(i.e., on the general conformation of	
the protein molecule) structure, on	
superficially located determinant	
groups and terminal amino acid	
residues. Colloidal state and	
solubility are mandatory properties	
of antigens.	
The specificity of antigens depends	
on special regions of protein	
molecules and polysaccharides	
called epitopes. Epitopes or	
antigenic determinants are	
fragments of antigen molecules that	
cause an immune response and	
determine its specificity. Antigenic	
determinants selectively react with	
antibodies or antigen-recognizing	
receptors of the cell.	
Epitopes can differ qualitatively,	
"their" antibodies can be formed to	
each. Antigens containing one	
antigenic determinant are called	
monovalent, - a number of epitopes	
- polyvalent. Polymer antigens	
contain a large number of identical	
epitopes (flagellins, LPS).	
The main types of antigenic	
specificity (depend on the	
specificity of the epitopes).	
1. Species - characteristic of all	
individuals of the same species	
(common epitopes).	
2. Group - within the species	
(isoantigens, which are	
characteristic of individual groups).	
An example is blood groups (ABO,	
etc.).	
3. Heterospecificity - the	
presence of common antigenic	
determinants of organisms of	
various taxonomic groups. There	
are cross-reacting antigens in	
bacteria and tissues of the	
macroorganism. a) Forsmann	
antigen - a typical cross-reacting	
antigen, detected in the erythrocytes	
of cats, dogs, sheep, guinea pig	

		I
	kidney; In humanIWh antigens	
	agglutinate antibodies to monkey	
	erythrocytes Macacus rhesus, i.e.	
	are cross-linked; c) common	
	antigenic determinants of human	
	erythrocytes and plague bacilli,	
	smallpox and influenza viruses are	
	known; d) another example is	
	protein A streptococcus and	
	myocardial tissue (valve apparatus).	
	4. Stage-specificity. There are	
	antigens characteristic of certain	
	stages of development associated	
	with morphogenesis. Alpha-	
	fetoprotein is characteristic of	
	embryonic development, synthesis	
	in adulthood increases dramatically	
	in liver cancer.	
	Flagella, or H-Ag, are localized in	
	the locomotor apparatus of bacteria	
	- their flagella. They are epitopes of	
	the contractile protein - flagellin.	
	When heated, flagellin denatures	
	(thermolabile), and H-Ag loses its	
	specificity. Phenol does not act on	
	this Ag.	
	Somatic, or O-Ag, is associated	
	with the cell wall of bacteria. It is	
	based on LPS, it is thermally stable	
	- it is not destroyed by prolonged	
	boiling (in Gr- bacteria, specificity	
	is determined by deoxysaccharides	
	of LPS polysaccharides). However,	
	somatic Ag is subject to the action	
	of aldehydes (formalin), alcohols	
	that violate its structure.	
	If the animal is immunized with live	
	bacteria that have flagella, then AT will be produced, directed	
	will be produced, directed simultaneously against O- and H-	
	Ag. The introduction of boiled	
	culture stimulates the biosynthesis	
	of AT to somatic O-Ag. A culture of	
	bacteria treated with phenol will	
	cause the formation of AT only to	
	flagella ah. Lipid A (part of the cell	
	wall of G- bacteria) is a	
	heterodimer; contains glucosamine	
	and fatty acids. It has a strong	
	adjuvant, nonspecific	
	immunostimulating activity and	
	toxicity.	
<u> </u>	- · J ·	I

 	1
Histocompatibility antigens. In	
organ transplants, there is a problem	
of tissue compatibility associated	
with the degree of their genetic	
relationship, rejection reactions of	
foreign allogeneic and xenogenic	
grafts, i.e. problems of	
transplantation immunity. There are	
a number of tissue antigens.	
Transplantation antigens largely	
determine the individual antigenic	
specificity of the body. The HLA	
system is a system of strong	
antigens. The spectrum of MHC	
molecules is unique to the body,	
which determines its biological	
individuality and allows it to	
distinguish between the "foreign-	
incompatible".	
The seven genetic loci of the system	
are divided into three classes.	
Class One genes control the	
synthesis of Class 1 antigens,	
identify tissue antigens, and control	
histocomposomessity. Class 1	
antigens determine individual	
antigenic specificity, they represent	
any foreign antigens to T-cytotoxic	
lymphocytes. Class 1 antigens are	
present on the surface of all	
nucleated cells. Class 1 MHC	
molecules interact with the CD8	
molecule expressed on the cytotoxic	
lymphocyte precursor membrane	
("CD" – claster difference).	
MHC Class 2 genes control class 2	
antigens. They control the response	
to thymus-dependent antigens.	
Class 2 antigens are expressed	
primarily on the membrane of the	
immuof nocompetent cells	
(primarily macrophages and B	
lymphocytes, partially activated T	
lymphocytes). The same group of	
genes (more precisely, the HLA-D	
region) also includes the genes of	
the 1g-strength of the immune	
response and the genes of the Is-	
cynpeccuu immune response. MHC	
class 2 antigens provide interaction	
between macrophages and B	
lymphocytes, are involved in all	

		stages of the immune response - the	
		presentation of the antigen by	
		macrophages to T-lymphocytes, the	
		interaction (cooperation) of	
		macrophages, T and B	
		lymphocytes, the differentiation of	
		immunocompetent cells. Class 2	
		antigens are involved in the	
		formation of antimicrobial,	
		,	
		antitumor, transplantation and other	
		types of immunity.	
4.	Endogenous	Cytokines. One of the	ID-1 GPC-5
	immunoregulators.	features of immunocompetent cells,	
	Cellular and humoral	especially T-lymphocytes, is the	
	immunity.	ability to produce a large number of	
	-	soluble substances - cytokines	
		(interleukins), which carry out	
		regulatory functions. They ensure	
		the coordinated work of all systems	
		and factors of the immune system,	
		thanks to direct and feedback	
		between different systems and	
		subpopulations of cells, provide	
		stable self-regulation of the immune	
		system. Cytokines are also involved	
		in the regulation of apoptosis, in	
		proliferation, angiogenesis and	
		other cellular processes. Views	
		were formed on a single cytokine	
		system that combines interferons,	
		interleukins, colony-stimulating	
		factors and other growth factors and	
		is of great importance in ensuring	
		the homeostasis of the body. Their	
		determination (cytokine profile)	
		gives an additional idea of the state	
		of the immune system. In general,	
		the homeostasis of the body is	
		provided by the coordinated work	
		(interaction) of the immune,	
		endocrine and nervous systems.	
		Cytokines are secreted by	
		various cells (lymphocytes,	
		macrophages, etc.) in the process of	
		intercellular interaction in response	
		to antigenic irritation (infectious	
		agent) and normally direct the	
		immune response along the most	
		effective pathway. According to the	
		profile of action, cytokines can be	
		divided into pro-inflammatory and	
		anti-inflammatory, according to the	
			15

predominant orientation of the
immune response -Th1 (T-helper l -
aimed at the formation of a cell-
mediated immune response) and
Th2 (mainly humoral). Balance of
Thl / Th2 cytokines in the early
stages of the inflammatory response
largely determine the
predominantly cellular or humoral
nature of the immune response.
Pro-inflammatory cytokines
- IL-1, IL-6, IL-8. IL-12, tumor
necrosis factor (TNF) alpha,
interferons (IF) alpha and gamma
are synthesized and act on
immunocompetent cells in the early
stages of inflammation. The
interaction of microorganisms with
macrophage receptors leads to the
induction of the synthesis and
secretion of pro-inflammatory
cytokines that ensure the
development of an early
inflammatory response.
The main mediator of
inflammation is IL-1. Cells respond
with the production of IL-1 to the action of toxins and other
components of microorganisms, activated components of the
complement system, and other
inflammatory mediators. Fever,
neutrophilia, complement
activation, synthesis of proteins of
the acute phase of inflammation, IL-
2, clonal proliferation of antigen-
specific T cells are associated with
an increase in the level of IL-1. The
pro-inflammatory effects of IL-1
are synergistic with other cytokines,
primarily TNF alpha and IL-6.
The main producers of TNF
alpha are monocytes and tissue
macrophages. In the early period of
inflammation, TNF alpha activates
the endothelium, promotes the
adhesion of leukocytes to the
epithelium, their migration to the
focus of inflammation, induces the
production of other pro-
inflammatory cytokines.

Anti-inflammatory	
cytokines (IL-4, IL-10, IL-13, TNF	
beta) constitute an alternative group	
to pro-inflammatory cytokines that	
limits the development of	
inflammation. Of significant	
importance is IL-4, the level of	
which is one of the criteria for	
assessing the Th2 response. IL-4, a factor in the activation of B-	
lymphocytes, is a growth factor for mast cells, T cells. IL-4 is	
synthesized and secreted by Th2	
cells.	
According to the nature of	
the biological action and structural	
organization, several groups of	
cytokines are distinguished.	
Hematopoietics are cell growth	
factors. These include interleukins	
(IL), which are produced by	
activated T- and B-lymphocytes,	
macrophages, thymus stroma cells.	
The functional activity of these	
mediators is multidirectional.	
Interleukins (IL-2-IL-7, IL-9, IL-	
11, IL-11, IL-13, IL-15) provide	
growth stimulation, differentiation	
and activation of T-, B-	
lymphocytes, NK-cells, macrophages, granulocytes and	
monocytes, increased activity of mast cells, etc.	
The same group of hematopoietins	
includes colony-stimulating factors	
(CSF), which control the	
maturation, proliferation and	
activation of immune system cells	
(granulocytes, monocytes,	
macrophages).	
Interferons (IFN) take a versatile	
part in the regulation of the immune	
response, have antiviral activity.	
Tumor necrosis factors (TNF- α and	
TNF- β) are so named because they	
are able to lyse some tumors.	
Stimulate the processes of adhesion,	
antibody formation and activity of mononuclear cells. Secreted by	
activated macrophages.	
Chemokines attract leukocytes,	
monocytes and lymphocytes from	
menocytes and tymphocytes nom	

the blood to the focus of inflammation. Chemokines include IL-8, macrophaginizing factor (MYTH), etc. Cytokines are secreted by various cells (lymphocytes, macrophages, etc.) in the process of intercellular interaction in response to antigenic irritation (infectious agent) and normally direct the immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper I - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the induction of the synthesis and
IL-8, macrophaginizing factor (MYTH), etc. Cytokines are secreted by various cells (lymphocytes, macrophages, etc.) in the process of intercellular interaction in response to antigenic irritation (infectious agent) and normally direct the immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper 1 - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8, IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
(MYTH), etc. Cytokines are secreted by various cells (lymphocytes, macrophages, etc.) in the process of intercellular interaction in response to antigenic irritation (infectious agent) and normally direct the immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper 1 - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8, IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
Cytokines are secreted by various cells (lymphocytes, macrophages, etc.) in the process of intercellular interaction in response to antigenic irritation (infectious agent) and normally direct the immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper I - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8, IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
Cytokines are secreted by various cells (lymphocytes, macrophages, etc.) in the process of intercellular interaction in response to antigenic irritation (infectious agent) and normally direct the immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper I - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8, IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
various cells (lymphocytes, macrophages, etc.) in the process of intercellular interaction in response to antigenic irritation (infectious agent) and normally direct the immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper 1 - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
macrophages, etc.) in the process of intercellular interaction in response to antigenic irritation (infectious agent) and normally direct the immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper 1 - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
intercellular interaction in response to antigenic irritation (infectious agent) and normally direct the immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper I - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
to antigenic irritation (infectious agent) and normally direct the immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper I - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
agent) and normally direct the immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper 1 - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
immune response along the most effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper 1 - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
effective pathway. According to the profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper I - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
profile of action, cytokines can be divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper I - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
divided into pro-inflammatory and anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper I - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
anti-inflammatory; according to the predominant orientation of the immune response - to Th1 (T-helper 1 - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
predominant orientation of the immune response - to Th1 (T-helper 1 - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
immune response - to Th1 (T-helper 1 - aimed at the formation of a cell- mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
 1 - aimed at the formation of a cell-mediated immune response) and Th2 (mainly humoral). The balance of Th1 / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
mediated immune response) and Th2 (mainly humoral). The balance of Thl / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
Th2 (mainly humoral). The balance of Thl / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
of Thl / Th2 cytokines in the early stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
stages of the inflammatory reaction largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
largely determines the predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
predominantly cellular or humoral nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
nature of the immune response. Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
Pro-inflammatory cytokines - IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
- IL-1, IL-6, IL-8. IL-12, tumor necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
necrosis factor (TNF) alpha, interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
interferons (IFN) alpha and gamma are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
are synthesized and act on immunocompetent cells in the early stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
stages of inflammation. The interaction of microorganisms with macrophage receptors leads to the
interaction of microorganisms with macrophage receptors leads to the
macrophage receptors leads to the
induction of the synthesis and
induction of the synthesis and
secretion of pro-inflammatory
cytokines that ensure the
development of an early
inflammatory response.
Anti-inflammatory cytokines (IL-4,
IL-10, IL-13, TNF beta) constitute
an alternative group to pro-
inflammatory cytokines that limits
the development of inflammation.
Of significant importance is IL-4,
the level of which is one of the
criteria for assessing the Th2-
response. IL-4 - the factor of
activation of B-lymphocytes, is a
growth factor for mast cells, T-cells.
IL-4 is synthesized and secreted by
Th2 cells. Th2-cytokines (IL-4, IL-

5, IL-6, IL-10, IL-13) enhance the	
antibody immune response and	
provide humoral immunity mainly	
against toxins and extracellular	
microorganisms.	
The immune response is a	
chain of successive complex	
cooperative processes that occur in	
the immune system in response to	
the action of an antigen in the body.	
There are: a primary	
immune response (occurs at the first	
meeting with the antigen);	
secondary immune response (occurs	
when re-encountering the antigen).	
Any immune response	
consists of two phases: inductive,	
representation and recognition of	
the antigen; there is a complex	
cooperation of cells with	
subsequent proliferation and	
differentiation; productive; the	
products of the immune response	
are detected.	
The following forms of	
•	
immune response are known: -	
humoral immunity, based on the	
production of immunoglobulins; -	
cellular immunity, which is based	
on the production of effector T-	
lymphocytes; - immunological	
memory; - immunological	
tolerance; - immunological	
hyperreactivity (RWGT, WGNT);	
- Idiotip-anti-idiotypic relationship.	
The immune response is	
characterized by: specificity	
(reactivity is directed only at a	
certain agent, which is called an	
antigen); potentiation (the ability to	
produce an enhanced response with	
a constant intake of the same	
antigen into the body);	
immunological memory (the ability	
to recognize and produce an	
enhanced response against the same	
antigen when it is re-entered the	
body, even if the first and	
subsequent hits occur at long	
intervals).	
The humoral immune	
response is carried out by the	

	1		۰ ۲
		production of antibodies	
		(immunoglobulins - Ig) to a foreign	
		antigen (from the Latin. humor –	
		liquid). They circulate in body	
		fluids and provide neutralization of	
		the antigen.	
		On the surface of B-	
		lymphocytes is the immunoglobulin	
		receptor BcR (sIg - superficial Ig).	
		It is he who recognizes, captures	
		and carries the antigen inside the	
		cell. Intracellular cleavage of the	
		antigen occurs to form peptides.	
		They, in combination with	
		molecules of class II MHC, are	
		carried to the surface of the B cell,	
		providing processing of the antigen	
		and presenting it in immunogenic	
		form. The development of further	
		events depends on the nature of the	
		antigen.	
		Thymus depending-antigens	
		(TD) need the help of T-helper	
		lymphocytes to produce antibodies.	
		The immune response to	
		thymus-independent antigens (LPS,	
		bacterial polysaccharides, high-	
		polymer proteins, etc.) is carried out	
		without the participation of CD4 T	
		helper cells. Only B cells with an	
		antigen-recognizing	
		immunoglobulin receptor are	
		involved in this process. At the	
		same time, the immune response	
		develops rapidly, usually in the	
		early stages of infection, but is less	
		perfect. Without the participation of	
		T helper cells, antibodies of only	
		one isotype (IgM) are produced.	
		The affinity (binding force) of these	
		antibodies is low, and no memory cells are formed.	
		The process of antibody formation	
E	Antibadian Classes of	occurs in the lymphoid tissue.	ID 1 CDC 5
5.	Antibodies. Classes of	Humoral immunity is	ID-1 GPC-5
	immunoglobulins.	characterized by the production of	
		specific antibodies	
		(immunoglobulins).	
		Antibodies are specific	
		proteins of gamma globulin nature	
		that are formed in the body in response to antigenic stimulation	
1			

and are able to specifically interact	
with the antigen (in vivo, in vitro).	
In accordance with the international	
classification, a set of whey proteins	
with antibody properties is called	
immunoglobulins (Ig).	
Ig are divided according to	
localization into three groups:	
- serum Ig (in the blood); - secretory	
Ig (in secretions - the contents of the	
gastrointestinal tract, tear secretion,	
saliva, especially in breast milk) provide local immunity (immunity	
of mucous membranes); -	
superficial Ig (on the surface of	
immunocompetent cells, especially	
B-lymphocytes).	
Ig are characterized by a	
common type of structure. The	
structural unit of antibodies is a	
monomer consisting of two light (L)	
and two heavy (H) chains connected	
by disulfide bridges. Monomers are	
IgG, IgA (serum), IgD and IgE.	
Polymeric Ig has an additional jay-	
polypeptide chain that unites	
(polymerizes) individual subunits	
(as part of the IgM pentamer, the	
secretory IgA di- and trimer).	
According to the specificity	
and ability to bind the antigen in the	
Ig molecule, 3 fragments are distinguished:	
Each antibody molecule has	
two identical antigen-binding	
fragments Fab (fragment antigen	
binding), which determine antibody	
specificity, and one Fc (fragment	
constant) fragment that does not	
bind the antigen, but has effector	
biological functions. It interacts	
with "its" receptor in the membrane	
of different types of cells	
(macrophage, fat cell, neutrophil).	
The terminal regions of the	
light and heavy chains of the	
immunoglobulin molecule are	
variable in composition (amino acid	
sequences) and are designated as	
variable V_L and V_H regions. In their	
composition, hypervariable regions (3 in L- and 4 in H-chains) are	
L = L = L = L = L = L = L = L = L = L =	

	distinguished, which determine the	
	structure of the active site of	
	antibodies (antigen-binding center	
	or paratope). Varieties of the	
	sequence of amino acids in these	
	hypervariable regions determine the	
	specificity of the antibody. It is with	
	the antigen-binding center that the	
	antigenic determinant (epitope) of	
	the antigen interacts. The antigen	
	binding center of antibodies is	
	complementary to the epitope of the antigen on the principle of "key-	
	lock" and is formed by	
	hypervariable regions of L- and H-	
	chains. The antibody binds to the	
	antigen (the key will get into the	
	lock) only if the determinant group	
	of the antigen is completely seated	
	in the slit of the active site of the	
	antibodies.	
	Light and heavy chains	
	consist of separate blocks -	
	domains. In light (L) chains - two	
	domains - one variable (V) and one	
	constant (C), in heavy (H) chains -	
	one V and 3 or 4 (depending on	
	class Ig) C domain.	
	There are light chains of two types - kappa and lambda, they are	
	found in different proportions in the	
	composition of different (all)	
	classes of immunoglobulins.	
	Antigenicity of antibodies.	
	Immunoglobulin, like any protein,	
	has antigenicity and pronounced	
	immunogenicity. In the Ig molecule	
	, 4 types of antigenic determinants	
	are distinguished: species, isotypic,	
	allotypic and idiotypic.	
	Species antigenic	
	determinants are characteristic of Ig	
	of all individuals of a given species	
	(for example, rabbit, dog, human). They are determined by the	
	They are determined by the structure of the light and heavy	
	chain, by these determinants it is	
	possible to identify the species	
	affiliation of AT.	
	Isotypic antigenic	
	determinants are group. They are	
	localized in the heavy chain and	
· · · ·	•	

serve to differentiate the Ig family
into 5 isotypes (classes) and many
subclasses.
Allotypic antigenic
determinants are individual, i.e.
inherent in a particular organism.
They are located in light and heavy
polypeptide chains. Allow you to
distinguish individuals within the
same species.
Idiotipic antigenic
determinants reflect the structural
features of the antigen-binding
center of the Ig molecule itself.
They are formed by the V-domains
of the light and heavy chain of the
Ig molecule. The discovery of
idiotypic antigenic determinants
served as the basis for the creation
of the theory of "idiotip-
antiidiotypic" regulation of
antibody biosynthesis.
Specificity - the ability to
interact with a certain (own) antigen
(correspondence of the epitope of
the antigen and the active site of
antibodies).
1. Valence is the
number of active sites capable of
reacting with the antigen (this is due
to the molecular organization -
mono- or polymer).
Immunoglobulins can be divalent
(IgG) or polyvalent (IgM pentamer
has 10 active sites). Two- or more
valence antibodies are called
complete antibodies. Incomplete
antibodies have only one active site
involved in interaction with the
antigen (blocking effect on
immunological reactions, for
example, on agglutination tests).
They are detected in the Coombs
anti-globulin test, a complement
binding inhibition reaction.
2. Affinity - (degree of
affinity) - this is the binding strength
between one antigenic epitope and
one active center of the antibody,
depends on their spatial
correspondence.
T

	I		
		3. The avidity of the	
		antigen-antibody bond is an integral	
		characteristic of the binding	
		strength of the whole antigen	
		molecule (all its epitopes) to all the	
		active antigen-binding centers of	
		the whole antibody molecule. Since	
		antigens are often polyvalent, the	
		bond between individual antigen	
		molecules is carried out using	
		several antibodies The binding of	
		-	
		the antigen to the antibody is based	
		on close contact, which is provided	
		by van der Waals forces (through a	
		cloud of electrons), hydrogen	
		bonds, electrostatic attraction or	
		hydrophobic bonds.	
		- Heterogeneity - due to the	
		antigenic properties of antibodies,	
		the presence of three types of	
		antigenic determinants: isotypic,	
		allotypic and idiotipic - reflecting	
		the individual characteristics of	
		immunoglobulin, determined by the	
		characteristics of antibody	
		paratopes. Even when antibodies to	
		a particular antigen belong to the	
		same class, subclass and even	
		allotype, they are characterized by	
		specific differences from each other	
		(idiotip). It depends on the	
		structural features of hypervariable	
		antigens. sections of the H- and L-	
		chains are many different variants	
		of their amino acid sequences.	
6	Serological diagnosis of	In infectious diseases, the	ID-2 GPC-5
	infectious diseases.	pathogen and its products (antigens,	
		toxins, enzymes) are present in the	
		internal environment of the body.	
		The body's response to the presence	
		of such foreign agents is expressed	
		in the formation of antibodies or	
		immune lymphocytes.	
		For this purpose, immunochemical methods, which	
		· · · · · · · · · · · · · · · · · · ·	
		are also called serological (from the	
		Latin serum - serum and logos -	
		teaching), are widely used to detect	
		AT or AG microorganisms in	
		biological native materials obtained	
		from sick or healthy people during	

diagnostic and immunological	
studies. Microorganisms.	
These methods, depending	
on the nature and state of the	
antigen, can be combined into	
several groups:	
- direct methods of interaction and	
visual determination of the results	
of the Ag-AT reaction:	
agglutination, precipitation, lysis	
and complement binding reactions;	
- methods of passive agglutination	
using antigen or antibody carriers	
(reactions with witnesses). These	
· · · · · · · · · · · · · · · · · · ·	
include passive hemagglutination,	
latex agglutination, coagglutination,	
etc.;	
- reactions based on the use of	
various labels for one of the	
participants in the antigen-antibody	
interaction (enzyme, fluorescent,	
radioisotope, etc.). Depending on	
the label used, these tests are called	
enzyme-linked immunosorbent	
assay (ELISA),	
immunofluorescence response	
(RIF), radioimmunological test	
(RIT), etc.	
Specificity is characterized	
by the ability of hypertension to	
react only with homologous AT,	
sensitivity - the minimum amount of	
antigens (or antibodies) that can be	
detected using this reaction.	
Detection in the patient's	
blood serum of antibodies against	
the antigens of the pathogen allows	
you to diagnose the disease. When	
isolating a microbe from a patient,	
the pathogen is identified by	
studying its antigenic properties	
(identification of antigens) using	
immune diagnostic serums, that is,	
serums of blood of hyperimmunized	
animals containing specific	
antibodies. This is the so-called	
serological identification of	
microorganisms. Serological	
studies are also used to identify	
various biologically active	
substances, blood groups, tissue and	
substances, blood groups, tissue and	

	tumor antigens, immune complexes,
	cell receptors, etc.
	The direct in vitro reaction
	between Ag and AT consists of a
	specific and nonspecific phase. In
	the specific phase, there is a rapid
	specific complementary binding of
	the active site of the antibody to the
	determinant of the antigen to form
	IR.
	Enzyme-linked
	immunosorbent assay (ELISA) is an
	immunological reaction of a
	specific interaction between an
	antigen and an antibody, in which
	enzyme molecules (horseradish
	peroxidase, alkaline phosphatase,
	etc.) are used as an indicator. This
	test is based on the ability of the
	marker enzyme to break down the
	substrate - orthophenylenediamine
	for horseradish peroxidase or
	paranitrophenyl phosphate for
	alkaline phosphatase and cause a
	change in the color of the reactive
	medium. These enzymes have a
	unique property. These enzymes
	have a unique property.
	simultaneously modify a large
	number of substrate molecules,
	which leads to an increase in the
	sensitivity of the immunological
	reaction.
	The substrate/chromogen is
	added to the mixture after the
	antigen is combined with the
	enzyme-labeled immune serum.
	The substrate is split by the enzyme,
	and the color of the reaction product
	changes - the intensity of the color
	is directly proportional to the
	number of bound antigen and
	antibody molecules.
	Antimicrobial or antispecies
	antibodies can be marked with a
	marker enzyme, which involves the
	use of different methods of analysis:
	solid-phase ELISA, ELISA
	sandwich method, etc. The
	components of the immune
	complex are detected using a special
	printer - a multiscan reader, etc.
L I	1

r	1	1	
		Solid-phase ELISA is the	
		most common variant of the	
		immunological test, when one of the	
		components of the immune reaction	
		(antigen or antibodies) is sorbed on	
		a solid carrier, for example, in the	
		wells of a polystyrene tablet.	
		A solid-phase carrier can be	
		sensitized not only by an antigen,	
		but also by antibodies. Then the	
		desired antigen is introduced into	
		the wells with sorbed antibodies, an	
		immune serum against the antigen is	
		added, labeled with an enzyme, and	
		then a substrate for the enzyme.	
		A competitive variant of	
		ELISA: The sought-after antigen	
		and the enzyme-labeled antigen	
		compete with each other to bind to a	
		limited number of immune serum	
		antibodies. Another test is the	
		sought-after antibodies and labeled	
		antibodies compete with each other	
		for antigens.	
		ELISA is used for the	
		diagnosis of viral, bacterial and	
		parasitic diseases, in particular for	
		the diagnosis of HIV infections,	
		hepatitis B, etc., as well as the	
		determination of hormones,	
		enzymes, drugs and other	
		biologically active substances	
		contained in the test material in	
		minor concentrations - $10 \ 10 \ 10^{12} \text{ g}$	
		/1.	
7.	Immunological	Immunological tolerance	ID-2 GPC-5
	tolerance.	(from Latin. tolerantia is a state of	
		areactivity of the immune system,	
		the specific "non-response" of the	
		body only to certain antigens (pre-	
		injected). At the same time, the	
		ability to respond to any other	
		antigens is preserved. Therefore,	
		tolerance is specific to the antigen	
		that caused it. Tolerance can be	
		complete (no immune response) or	
		partial (a significant decrease in	
		response).	
		Immunological tolerance is	
		a special form of immune response	
		characterized by the prohibition	
		imposed by T and B suppressors on	

the formation of effector cells
against a given, including its own,
antigen.
There are two variants of
manifestation of this phenomenon:
natural tolerance, when the state of
areactivity is formed to "its own",
that is, to the antigens of its own
tissues; induced tolerance to the
"foreign" antigen - foreign cells,
proteins, polysaccharides, haptens,
etc.
As an immunological
phenomenon, tolerance was
experimentally substantiated by the
English researcher Medovar (1953)
and the Czech scientist Hašek in
1963. Their experiments confirmed
the hypothesis of the Australian
immunologist Burnett that in the embryonic period the ability not to
respond to "their" antigens is
formed.
Thanks to this phenomenon,
the immune system can differentiate
between "its own" and "foreign" and
resist immune self-destruction.
Acquired immunological
tolerance is the absence of a specific
immune reaction to a foreign
antigen.
Induced (acquired)
immunological tolerance can occur
at any period of life when the
immune system (in particular,
macrophages, T- and B-
lymphocytes) come into contact
with foreign Hypertension.
However, the phenomenon of
immunological tolerance is most
easily reproduced during embryonic
development. The immune system
recognizes as "its" antigen, which
was in contact with it during the
embryonic period.
Antigens that induce
immunological tolerance are called
tolerogens. Maintaining tolerance
that has arisen in the embryonic or
in any other period requires the presence of a tolerogen in the body.
For example, the state of tolerance
1 of example, the state of tolerance

to foreign red blood cells induced in	
the embryonic period continues as	
long as this Ah is present in the	
body.	
In the formation of induced	
immunological tolerance, central mechanisms associated with the	
direct effect on immunocompetent	
cells are involved:	
increased activity of	
suppressor T and B cells,	
insufficiency of countersuppressors,	
in which the inhibition of the clone	
of peripheral T and B lymphocytes,	
NK cells is carried out by	
suppressor lymphocytes (CD8 T	
cells) with the help of cytokines.	
The role of inducers of suppressor	
cells can be played by an antigen	
introduced into the body in a small dose (low-dose tolerance);	
blockade of effector	
cells;	
• antigen elimination	
of immunocompetent cells in the	
thymus and bone marrow (T and B	
cellIWespectively);	
defectiveness of Ag's	
presentation; imbalance of the	
processes of proliferation and	
differentiation, cooperation of cells in the immune response;	
clonal-deficient	
mechanism, characterized by the	
destruction of a clone of B-	
lymphocyte progenitor cells in the	
presence of an excess of antigen-	
tolerogen. The introduction of	
foreign Ag in the embryonic period	
also leads to clonal elimination of T	
cells.	
Peripheral mechanisms are	
associated with overload (depletion) of the immune system with antigen,	
passive administration of high-	
affinity antibodies, the action of	
anti-idiotypic antibodies, blockade	
of receptors by antigen, antigen-	
antibody complex.	
In the body of mammals	
there are organs and tissues to which	
there is no natural tolerance (brain,	

			,
		eyes, testes, thyroid gland, adrenal	
		glands, etc.). This is explained by	
		the fact that during embryonic	
		development, they did not have	
		contact with lymphoid organs and	
		cells. There is no contact of these	
		organs with immunocompetent cells	
		in postnatal ontogenesis. Therefore,	
		they are called "barrier". When	
		these organs are damaged, a normal	
		immune response can develop as a	
		protective reaction against the	
		antigens of these tissues, called	
		immune autoaggression.	
8.	Clinical immunology.	In some cases, the	ID-2 GPC-5
	Allergic reactions	introduction of an antigen into the	
		body can induce an abnormal	
		hyperergic reaction, which bears the	
		features of a pathological process	
		and is the direct opposite of	
		immunological tolerance. This	
		unusual form of response, which is	
		based on natural physiological	
		mechanisms, is called an allergy	
		(from the Greek. alios is different	
		and ergon is action). The study of	
		allergies is an independent science -	
		allergology. Accordingly, antigens	
		that cause allergic reactions are	
		called allergens.	
		Hypersensitivity is called	
		an in daguata	
		manifestation of reactions of	
		acquired immunity. The basis of	
		hypersensitivity is a normally useful	
		immune response for the body, but	
		in this case acting inadequately,	
		often with the development of	
		inflammation and tissue damage.	
		Hypersensitivity reactions can be	
		provoked by many antigens, and	
		their causes are different in different	
		people. Hypersensitivity does not	
		manifest itself at the first, but, as a	
		rule, only during subsequent	
		contacts with the antigen.	
		So, and the allergy is the	
		body's immune reaction,	
		accompanied by damage to its own	
		tissues.	
		Allergic diseases are a	
		group of diseases, the development	
L	1		30

of which is based on damage caused	
by an immune reaction to	
exogenous allergens.	
Autoallergic diseases (or	
autoimmune) are a group of	
diseases whose development is	
based on damage caused by an	
immune reaction to antigens of	
one's own tissues (endoantigens).	
The term "allergy", meaning	
the altered reactivity of the host	
organism during its repeated	
encounters with the "agent", was	
first proposed in 1906 by von Pirke	
(Piruet) (without dividing the	
immunological reactions	
developing in this process by type).	
The term allergy has become	
synonymous for type 1	
hypersensitivity only in recent	
years.	
The period between the	
primary ingestion of the allergen	
into the body and the secondary	
(after which an allergic reaction	
occurs) is called the period of	
sensitization. The period of	
sensitization can last from several	
days to several weeks, and even	
several decades.	
Sensitization can be induced	
by a very small, subimmunizing	
dose of antigen (for example, by	
injecting a guinea pig with	
0.000001 ml of horse serum), which	
is called sensitizing. Repeated	
administration of the same antigen	
after a certain period of time causes	
an allergic reaction. The dose of	
antigen that causes the actual	
allergic reaction is called resolving.	
In the development of an allergic	
reaction, three stages are	
distinguished:	
- During the immunological stage, antigen-sensitive cells, specific	
antibodies and immune complexes	
are formed in response to the	
allergen.	
- The pathochemical stage is	
characterized by the formation of	
inflammatory mediators and	
internation y interations and	

		biologically active amines, which	
		play a major role in the mechanism	
		of allergic reactions. The stimulus	
		for their formation is the connection	
		of the allergen with antibodies or	
		sensitized lymphocytes at the end of	
		the immunological stage.	
		- During the pathophysiological	
		stage, the clinical picture of an	
		allergic reaction appears. As a rule,	
		the clinical manifestations of	
		allergies are polymorphic.	
		The first classification of	
		allergies was proposed by R. Cook	
		in 1947, it was based on the time of	
		development of an allergic reaction.	
		Hypersensitivity of the immediate	
		(GNT) and delayed (HRT) type were	
		distinguished. A comparison of the	
		properties of GNT and HRT is	
		presented in the table: Properties of	
		GNT and HRT (according to Cook,	
		1947) The study of the melecular	
		The study of the molecular	
		mechanisms of allergies led to the	
		creation of a new classification by Jell and Coombs (Coombs, Gell) in	
		1968. In accordance with it, four	
		main types of allergies are	
		distinguished: anaphylactic (type I),	
		cytotoxic (type II),	
		immunocomplex (type III) and cell-	
		mediated (IV type). The first three	
		types belong to GNT, the fourth to	
		HRT. The reactions of the first three	
		types are mediated by antibodies;	
		the reactions of the fourth are	
		mainly T cells and macrophages. In	
		practice, they do not necessarily	
		occur separately, they can be	
		combined.	
9.	Immunodeficiencies.	Immunodeficiency states	ID-2 GPC-5
	Immune status.	(IDS) are called violations of the	
		immune status and the ability to	
		normal immune response to various	
		antigens. These disorders are caused	
		by defects in one or more parts of	
		the immune system.	
		The classification of	
		immunodeficiency states can be	
		based on different principles.	

I. First of all, by origin, they	
are divided into primary	
(congenital) IDS and secondary IDS	
(acquired).	
- Primary are often associated with	
defects in genes that control the	
work of certain parts of the immune	
system. Genetically determined	
immunodeficiency states are	
detected mainly in children of the	
first year of life, who rarely live up	
to a year without active treatment	
with the replacement of identified	
defects.	
- Secondary (acquired)	
immunodeficiency states arise as a	
result of exposure to environmental	
factors on the cells of the immune	
system - in connection with	
infections, invasions, tumors, aging,	
burns, injurieIWadiation, the action	
of pharmacological agents, etc.	
II. Another principle of	
classification of	
immunodeficiencies is associated	
with the level of defect of the	
immune system, its defective link.	
Depending on the level of the	
defect, the following are	
distinguished:	
- immunodeficiencies caused by a	
predominant lesion of the B-link.	
Predominant defects of the B-	
system of immunity are detected as	
system of minumty are detected as syndromes of	
hypogammaglobulinemia or	
agammaglobulinemia;	
- immunodeficiencies caused by a	
predominant lesion of the T-link	
(for example, thymus aplasia	
syndrome);	
- combined immunodeficiencies.	
The most severe are the combined	
defects of the T- and B-systems of	
immunity.	
A decrease in the level of	
immunoglobulins in the blood	
serum can affect either all classes,	
or selectively - one or two classes.	
Often there is a deficiency of	
secretory sIgA, which is associated	
with gross violations of the local	
Bross riolations of the local	

protection of the mucous	
membranes. It should be borne in	
mind that the same syndrome, for	
example, hypogammaglobulinemia,	
may be a consequence of a defect in	
different parts of the immune	
system. In one case, the cause may	
be a defect in B-lymphocytes, in	
others - a defect in the antigen-	
presenting function of	
macrophages, or a defect in T-	
helper cells.	
Iii. The third principle of	
classification of immunodeficiency	
states is based on the analysis of	
specific causes of their occurrence.	
The most commonly distinguished	
immunodeficiencies due to:	
- disorders of the humoral link of	
immunity (hypo- and	
agammaglobulinemia, etc.; - violations of the functions of the	
thymus and cellular immunity;	
- disorders in the phagocytosis	
system;	
- defects in the complement system;	
- violations of the main	
histocompatibility system;	
- violations of the production of	
interleukins, etc.;	
- severe combined disorders.	
Common manifestations of	
IDS include:	
- infectious syndrome (purulent-	
septic processes are associated with	
disorders of predominantly humoral	
immunity, opportunistic viral,	
fungal and protozoal diseases - with	
defects in cellular immunity);	
- gastrointestinal disorders	
(malabsorption, IgA deficiency,	
infections of the gastrointestinal	
tract);	
- tumors of the immune system;	
- allergic and autoimmune	
syndromes (atopy, autoimmune	
hemolytic anemia);	
- frequent combination with	
malformations (with congenital	
immunodeficiencies);	
- hematological changes (decrease	
in the number of lymphocytes and	

	neutrophils, eosinophilia, anemia,	
	thrombocytopenia).	
	Immune status is the state of	
	the immune system in this patient at	
	the moment of the study, which is	
	assessed using a set of laboratory	
	indicators that characterize the	
	number and functional activity of	
	immune system cells, as well as	
	factors of nonspecific resistance of	
	the body (Drannik G.N.).	
	Immune status determines	
	the effectiveness and consistency of	
	the work of all systems and links of	
	immunity - macrophages,	
	complement, interferons, T and B	
	lymphocytes, the main	
	histocompatibility system. To make	
	a diagnosis of an	
	immunopathological condition, an	
	immunological history is collected	
	and immunological tests are	
	performed. In vivo tests (skin tests),	
	X-ray examination of lymphoid	
	organs (thymus) can also be carried	
	out.	
	Based on WHO data and many	
	years of experience in studying the	
	immune status of healthy and sick	
	people, R. V. Petrov created a two- stage approach to assessing the	
	immune status.	
	I. After identifying clinical	
	signs of violations of a particular	
	link of the immune system, their	
	quantitative characteristics are	
	investigated, the so-called	
	indicative tests of the first level to	
	identify "gross" defects in	
	phagocytosis, cellular and humoral	
	immunity:	
	- determination of the absolute	
	and relative content of lymphocytes	
	in peripheral blood;	
	- determination of the number of	
	T- and B-lymphocytes;	
	- determination of the level of	
	immunoglobulins of the main	
	classes (IgG, M, A);	
	- determination of phagocytic	
	activity of leukocytes;	
· ·	· · · ·	

r			
		- determination of complement	
		titer (optional).	
		II. Taking into account the	
		analysis of the results of level 1	
		tests, further tactics of	
		immunological research are	
		determined. In the presence of	
		significant changes in the	
		immunogram, it is necessary to	
		proceed to more complex, so-called	
		analytical tests of the second level,	
		which allow you to establish the	
		severity of the immunological	
		defect. These include almost all	
		methods by which it is possible to	
		assess the functional activity of	
		phagocytes, auxiliary cells, NK, T	
		and B cells.	
10.	Immunoprophylaxis.	Immunoprophylaxis and	ID-2 GPC-5
	Immunotherapy.	immunotherapy are branches of	
		immunology that study and develop	
		methods and methods for the	
		specific prevention, treatment and	
		diagnosis of infectious and non-	
		infectious diseases with the help of	
		immunobiological preparations that	
		affect the function of the immune	
		system, or whose action is based on	
		immunological principles.	
		Immunotherapy is a method of treatment in which the immune	
		system is affected: suppression of the immune response	
		(immunosuppression), stimulation	
		of the response	
		(immunostimulation), restoration of	
		immunodeficiencies	
		(immunocorrection). In the applied,	
		narrower sense, immunotherapy	
		uses specific methods of	
		serotherapy (the use of immune	
		serums, immunoglobulins), vaccine	
		therapy (therapeutic vaccines),	
		immunocorrection (desensitization,	
		etc.).	
		Immunoprophylaxis is a	
		way to prevent infectious diseases	
		by creating artificial specific	
		immunity. There are vaccine	
		prophylaxis (the creation of active	
		immunity due to vaccines, antigens)	
		and seroprophylaxis (passive	
			36

immunity by introducing specific antibodies into the body - immunoglobulins). Vaccination Mankind owes vaccination to E. Jenner, who in 1796 showed that the vaccination of cowpox - vaccination (vaccinum - from the Latin cow) is effective for the prevention of smallpox. Since then, the drugs used to create active immunity are called vaccines. Immunoprophylaxis and immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system. b) suppress the activity of individual parts of the immune system; c) normalize the work of the immunoprophylaxis and immunoprophylaxis and immunoprophylaxis and immunoterapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocompetent cells and other	
immunoglobulins). Vaccination. Mankind owes vaccination to E. Jenner, who in 1796 showed that the vaccination of cowpox - vaccination (vaccinum - from the Latin cow) is effective for the prevention of smallpox. Since then, the drugs used to create active immunity are called vaccines. Immunoprophylaxis and immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobriological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	immunity by introducing specific
Vaccination Mankind owes vaccination to E. Jenner, who in 1796 showed that the vaccination of cowpox - vaccination (vaccinum - from the Latin cow) is effective for the prevention of smallpox. Since then, the drugs used to create active immunoprophylaxis and immunoherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of individual parts of the immune system; c) normalize the work of the immunoprophylaxis and immunophylaxis and <td>antibodies into the body -</td>	antibodies into the body -
vaccination to E. Jenner, who in 1796 showed that the vaccination of cowpox - vaccination (vaccinum - from the Latin cow) is effective for the prevention of smallpox. Since then, the drugs used to create active immunity are called vaccines. Immunoprophylaxis and immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	immunoglobulins).
 1796 showed that the vaccination of cowpox - vaccination (vaccinum - from the Latin cow) is effective for the prevention of smallpox. Since then, the drugs used to create active immunity are called vaccines. Immunoprophylaxis and immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system; c) normalize the work of the immune system; c) normalize the work of the immune system; munoprophylaxis and immunoprophylaxis and immunoprophylaxis and immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunobeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines, 	Vaccination. Mankind owes
cowpox - vaccination (vaccinum - from the Latin cow) is effective for the prevention of smallpox. Since then, the drugs used to create active immunity are called vaccines. Immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immunotherapy are videly used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunobeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system or through the immune system or through the immune system or norological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologicall y active substances such as immunocytokines,	vaccination to E. Jenner, who in
from the Latin cow) is effective for the prevention of smallpox. Since then, the drugs used to create active immunity are called vaccines. Immunoprophylaxis and immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex compositon, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	1796 showed that the vaccination of
from the Latin cow) is effective for the prevention of smallpox. Since then, the drugs used to create active immunity are called vaccines. Immunoprophylaxis and immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex compositon, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	cowpox - vaccination (vaccinum -
the prevention of smallpox. Since then, the drugs used to create active immunity are called vaccines. Immunoprophylaxis and immunoberapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or neit mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	1
then, the drugs used to create active immunity are called vaccines. Immunoprophylaxis and immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	,
immunity are called vaccines. Immunoprophylaxis and immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system or through the immune system or through the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
Immunoprophylaxis and immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immuno system, if there are deviations of its function in one direction or another. Immunoprophylaxis monotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The act	
immunotherapy are used in cases where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances	•
where it is necessary: a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances	
a) to form, create specific immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
immunity or activate the activity of the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances	5
the immune system; b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	· · · · · ·
b) suppress the activity of individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
individual parts of the immune system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
system; c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
c) normalize the work of the immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	_
immune system, if there are deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
deviations of its function in one direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	,
direction or another. Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	•
Immunoprophylaxis and immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
immunotherapy are widely used in various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
various fields of medicine, primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
primarily in the prevention and treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
treatment of infectious diseases, allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	· · · · · · · · · · · · · · · · · · ·
allergies, immunopathological conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
conditions, in oncology, transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
transplantology, in primary and secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
secondary immunodeficiencies and other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
other diseases. Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
Immunobiological preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	•
preparations have a complex composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
composition, differ in nature, methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	•
methods of obtaining and using, intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
intended purpose. However, as mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	· · · · · · · · · · · · · · · · · · ·
mentioned above, what they have in common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
common is that they act either on the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
the immune system or through the immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	•
immune system, or their mechanism of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
of action is based on immunological principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
principles. The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
The active principle in the UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
UPS is either antigens obtained in one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
one way or another, or antibodies, or microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
microbial cells and their derivatives, or biologically active substances such as immunocytokines,	
or biologically active substances such as immunocytokines,	
such as immunocytokines,	
	č
immunocompetent cells and other	5
	immunocompetent cells and other

	r
immunoreagents. In addition to the	
active principle, UPSs can,	
depending on their nature and	
nature, include stabilizers,	
adjuvants, preservatives and other	
substances that improve the quality	
of the drug (for example, vitamins,	
adaptogens).	
The main role in the specific	
prevention of infectious diseases	
has vaccine prophylaxis.	
Vaccines are biologics prepared	
from microbes or their antigens,	
which are used to prevent infectious	
diseases. The body responds to the	
introduction of the vaccine by	
forming artificial active immunity	
due to the production of antibodies	
or primed lymphocytes.	
There are a number of types of	
vaccines - live, killed, component	
and subunit, recombinant, synthetic	
oligopeptide, anti-idiotypic, etc.	
1. Killed (inactivated)	
vaccines are vaccine preparations	
that do not contain live	
microorganisms. Vaccines can	
contain whole microbes	
(corpuscles) - vaccines against	
plague, influenza, Salk polio	
vaccine, as well as individual	
components (polysaccharide	
pneumococcal vaccine) or	
immunologically active fractions	
(hepatitis B virus vaccine).	
2. Live attenuated	
(attenuated) vaccines. These	
vaccines have some advantages	
over the killed. They completely	
preserve the antigenic set of the	
microorganism and provide a longer	
state of specific immunity. Live vaccines are used to prevent	
poliomyelitis, tularemia,	
brucellosis, measles, yellow fever,	
-	
mumps. 3. Component	
(subunit) vaccines consist of the	
main (major) antigenic components	
that can provide protective	
immunity. They can be:	
minumey. They can be.	

- components of cell	
structures (cell wall antigens, H-	
and Vi-antigenIWibosomal	
antigens);	
- toxoids -	
preparations containing chemically	
modified exotoxins, devoid of toxic	
properties, but retaining high	
antigenicity and immuno-	
generosity. These drugs provide the	
production of antitoxic immunity	
(antitoxic antibodies - antitoxins).	
The most widely used are diphtheria	
and tetanus toxoids. DTP is an	
associated pertussis-diphtheria-	
tetanus vaccine.	
- subunit vaccines.	
The hepatitis B virus vaccine is	
prepared from surface proteins	
(subunits) of viral particles (HBs	
antigen). Currently, this vaccine is	
obtained on a recombinant basis -	
using yeast cells with a plasmid	
encoding the HBs antigen. 4.Recombinant vaccines.	
With the help of genetic engineering	
methods, the genes that control the	
synthesis of the most significant	
immunogenic determinants are	
embedded in self-replicating	
genetic structures (plasmids,	
viruses). If the carrier (vector) is the	
smallpox vaccine virus, then this	
vaccine will induce immunity in the	
body not only against smallpox, but	
also against the pathogen whose	
gene was embedded in its genome	
(if the HBs antigen gene is against	
the hepatitis B virus).	
If the vector is a plasmid,	
then during the reproduction of a re-	
combinant clone of the	
microorganism (yeast, for	
example), the necessary antigen is	
produced, which is used in the	
future for the production of	
vaccines.	
5. Synthetic	
oligopeptide vaccines. The	
principles of their construction	
include the synthesis of peptide	
sequences that form epitopes	

recognized by neutralizing	
antibodies.	
6. Cassette or exposure	
vaccines. A protein structure is used	
as a carrier, on the surface of which	
the corresponding certain antigenic	
determinants introduced by	
chemical or genetically engineered	
means are exposed (arranged).	
7. Liposomal vaccines.	
They are complexes consisting of	
antigens and lipophilic carriers (for	
example, phospholipids).	
• •	
effectively stimulate the production	
of antibodies, the proliferation of T-	
lymphocytes and the secretion of	
IL-2 by them.	
8. Anti-idiotypic vaccines.	
Anti-idiotypic antibodies contain an	
"internal" specific portrait of the	
antigenic determinant. Monoclonal	
anti-idiotypic antibodies containing	
an "internal image" of the protective	
antigen are obtained. Currently, 7	
toxoids, about 20 antiviral and more	
than 20 antibacterial vaccines are	
produced in our country. Some of	
them are associated - i.e. containing	
antigens of different pathogens, or	
one, but in different versions	
(corpuscular and chemical).	
• Depending on the	
number of antigens, mono-, di-, tri-,	
tetra- or polyvaccines are prepared.	
Combined (from several different	
bacteria) and associated vaccines	
consisting of killed bacteria and	
toxoids (for example, chemical	
sorbed typhoid-paratyphoid-tetanus	
vaccine) are used.	
Toxoids (toxoids) (an -	
denial, toxo - poison) are drugs that	
are obtained from bacterial	
exotoxins. They are completely	
devoid of toxic properties, but retain	
immunogenicity. When injected	
into the body, they induce the	
production of immunoglobulins -	
antitoxins. The method of obtaining	
toxoid was proposed in 1923 by the	
French scientist Ramon.	

T 1/ 1 0 0 0 40/	
To obtain toxoid, a 0.3-0.4%	
formalin solution is added to the	
filtrate of the nutrient broth, in	
which exotoxin-producing bacteria	
were grown, and 3-4 weeks in a	
thermostat at 37-40 ° C. Toxoids are	
prepared in the form of drugs	
adsorbed on adjuvants. They are	
often part of associated vaccines.	
Toxoids are used to prevent	
diphtheria, tetanus, staphylococcal	
infection, etc.	

5.2. Sections of discipline and labor intensity by types of educational work

Section	Name of the discipline section	Types of educational work, hour.			Altogether	
No.		cl	assrooi	n	extracurricular	hour.
		L	PE	LC	IWS	
1.	Immunity. Types of immunity. Innate immunity. Non-specific factors of innate immunity.	2	6	-	4	12
2.	Immune system. Immunocompetent cells.	2	4	-	4	10
3.	Antigens. Classification. Views. Properties.	2	8	-	4	14
4.	Endogenous immunoregulators. Humoral and cellular immune response.	2	4	-	4	10
5.	Antibodies. Classes of immunoglobulins.	2	2	-	4	8
6.	Serological diagnosis of infectious diseases.	1	8	-	2	11
7.	Immunological memory. Features of immunity in various infections. Immunological tolerance. Transplacental immunity, Protifloral immunity.	2	8	-	4	14
8.	Clinical immunology. Allergic reactions. Autoimmune reactions and diseases.	2	6	-	4	12
9.	Immunodeficiencies. Methods of studying the immune status.	2	4	-	4	10
10.	Immunoprophylaxis. Principles of immunotropic therapy.	1	4	-	2	7
	TOTAL:	18	54	-	36	108

~		5. Thematic plan of lectures	
Sect ion No.	Discipline section	Topics of lectures	Number of hours per semester VI
1.	Immunity. Types of immunity. Innate immunity. Non- specific factors of innate immunity.	L 1. Introduction to Immunology. Immunity. Types of immunity. Innate immunity. Modern ideas about the factors of cellular and humoral immunity.	2
2.	Immune system. Immunocompetent cells.	L.2. Immune system, structure, functions. Immunocompetent cells. Origin and differentiation of T and B lymphocytes. The concept of markers.	2
3.	Antigens. Classification. Views. Properties.	L.3. Antigens, properties. Microbial antigens. Antigens of microorganisms. Antigens of the main histocompatibility complex.	2
4.	Endogenous immunoregulators. Humoral and cellular immune response.	L.4. Humoral and cellular immune response. Antibodies, classes of immunoglobulins, their characteristics. Hormones and mediators of the immune	2
5. <u>6.</u>	Antibodies. Classes of immunoglobulins.	system. L.5. Applied immunology. Serological methods of research.	2
0.	Serological diagnosis of infectious diseases.		
7.	Immunological memory. Immunological tolerance. Transplacental, antitumor immunity.	L.6. Features of the immune response in various conditions. Immune response in bacterial, protozoal, fungal and viral infections. Immunological memory. Immunological tolerance. Transplantation and antitumor immunity.	2
8.	Clinical immunology. Allergic reactions. Autoimmune reactions and diseases.	L.7. Immunopathology. Immunological hypersensitivity (allergy). Autoimmune reactions and diseases.	2
9.	Immunodeficiencies. Methods of studying the immune status.	L.8. Immune status. Congenital and acquired immunodeficiencies. Methods of detection and correction.	2
10.	Principles of immunotropic therapy. Immunoprophylaxis.	L.9. Basics of immunoprophylaxis and immunotherapy. Immunomodulators.	2
TOT	AL:		18

No raz-	Partition Discipline	Topics of practical exercises	Forms of current	Number of hours per
dela			control	semester VI
1.	Immunity. Types	PE.1 "Immunity. Types of immunity»	Т	2
	of immunity. Innate immunity.	PE.2 "Cellular factors of innate immunity. Phagocytosis»	S, NW	2
	Non-specific factors of innate immunity.	PE.3 "Innate immunity. Factors of innate immunity»	S, NW	2
2.	Immune system. Immunocompetent cells.	PE.4 "Lymphoid system"	S, NW	2
	cons.	PE.5 "Immunocompetent cells"	S, NW	2
3.	Antigens. Classification.	PE.6 "Antigens, classification, species, properties"	S, NW	2
	Views. Properties.	PE.7 "Antigens of microorganisms"	S, NW 2 S, NW 2 T, S, NW 2 T, S, NW 2 rs. S, NW	2
		PE.8 "Antigens of the human body"	S, NW	2
		PE.9 ''Final lesson on topics 1-8»	T, S, NW	2
4.	Endogenous immunoregulators. Humoral and cellular immune	PE.10 Endogenous immunoregulators. Hormones, cytokines, their role in immunity. Apoptosis.	S, NW	2
	response.	PE.11 Humoral and cellular immune response.	S, NW	2
5.	Antibodies. Classes of immunoglobulins.	PE.12 Antibodies. Classes of immunoglobulins.	S, NW	2
6.	Serological diagnosis of infectious diseases.	PE.13 Classification of serological reactions.Agglutination reaction, its variants.PE.14 Precipitation reactions, variants. Lysis reactions, variants.	S, Pr, NW	4
		PE.15 Serological reactions with an antigen or antibody label (RIF, IPM, RIM).	S, NW 2 of S, NW 2 s. S, Pr, NW 4	2
		PE.16 Final lesson on topics 10-14.	T, S, NW	2
7.	Immunological memory. Features of the immune response in various infections. Immunological tolerance. Transplacental immunity.	 PE.17. Immunological memory: Differences between primary and secondary immune response. Features of the immune response in various infections caused by bacteria, viruses, fungi, protozoa PE. 19. Immunological tolerance. PE. 20. Transplacental immunity. PE. 21. Antitumor immunity. 	S, NW	8
	Protivatumor immunity.			

5.4. Thematic plan of practical exercises

8.	Clinical immunology. Allergic reactions. Autoimmune	PE. 22. Allergic reactions. Mechanisms of development of allergic reactions. Classification of allergic reactions according to Jell and Coombs.	S, NW	2
	reactions and diseases.	PE. 2. 3 Infectious allergy. Allergic reactions type IV. Principles of diagnosis of allergic diseases.PE. 24. Autoimmune reactions and diseases. Autoantigens. Autoantibodies.Principles of diagnosis and therapy of autoimmune diseases.	S, NW	4
9.	Immunodeficiencie s Methods for studying the immune status.	PE.25. Primary and secondary immunodeficiencies. Methods of diagnosis and correction of immunodeficiencies. Methods of studying the immune status.	S, NW S, NW	4
10.	Principles of immunotropic therapy. Immunoprophylaxi s.	PE.26. Principles of immunotropic therapy. Immunoprophylaxis, immunotherapy.	S, NW	2
		PE.27 Final lesson on topics 16-23.	T, S, NW	2
TOT	AL:			54

5.5. Educational and methodological support for independent work on the discipline 5.5.1. Independent work of the student by discipline

No	Partition	Title of works	Work	Forms of
p/n	Discipline		Capacity	control
			(hour)	
1.		Filling in the main terms of the section in	2	IW
		the workbook; study of educational and		
		scientific literature		
		Preparation for practical exercises -		
		filling in the main terms of the section in		
		the workbook; study of educational and		
	Immunity. Types	scientific literature.		
	of immunity.	Preparation for practical exercises -	2	IW
	Innate immunity.	filling in the main drawings and terms of		
		the section Types of immunity in the		
		workbook; study of educational and		
		scientific literature.		
		Work with electronic educational		
		resources located in the electronic		
		information system of DSMU		
2.	Immune system.	Preparation for practical exercises-filling	4	IW
	Immunocompete	in the workbook of the main drawings		
	nt cells.	and terms of the section Immune System;		
		abstract messages on immunocompetent		
		cells;		

		Work with electronic educational		
		resources located in the electronic		
2		information system of DSMU	4	1117
3.	Antigens.	Preparation for practical exercises-filling	4	IW
	Classification.	in the workbook of the main drawings		
	Views.	and terms of the section; abstract		
	Properties.	messages on the topics: "Antigens.		
		Classification".		
		Work with electronic educational		
		resources located in the electronic		
		information system of DSMU.		
		Preparation for testing and testing.		
4.	Endogenous	Preparation for practical exercises -	4	IW
	immunoregulator	filling in the main terms of the		
	s. Humoral and	endogenous immunoregulators section in		
	cellular immune	the workbook. Study of educational and		
	response.	scientific literature.		
	responser	Work with electronic educational		
	Antibodies.	resources located in the electronic		
5.	Classes of	information system of DSMU.		
5.	immunoglobulins		4	
6.	Serological	Preparation for practical exercises -	2	IW
0.	diagnosis of	filling in the workbook diagrams of the	2	1 **
	infectious			
		main serological and immunological		
	diseases.	reactions used for the diagnosis of		
		infectious diseases.		
		Study of educational and scientific		
		literature.		
		Work with electronic educational		
		resources located in the electronic		
		information system of DSMU.		
		Preparation for testing and testing		
7.	Immunological	Preparation for practical exercises -	4	IW
	memory.	filling in the drawings and terms of the		
	Immunological	section "Immunological memory" in the		
	tolerance.	workbook; study of educational and		
		scientific literature; preparation of		
		abstracts on the topics and		
		"Immunological tolerance".		
		Work with electronic educational		
		resources located in the electronic		
		information system of DSMU		
8.	Clinical	Preparation for practical exercises -	4	IW
0.	immunology.	filling in the main drawings and terms of	т	1 1 1
	Allergic	the section "Clinical immunology.		
	reactions.			
	reactions.	Allergic reactions"; study of educational		
		and scientific literature.		
		Work with electronic educational		
		resources located in the electronic		
		information system of DSMU		
9.		Preparation for practical exercises - filling	4	IW
	Immunodeficienc	in the main drawings and terms of the		

	ies. Immune status.	section "Methods of studying the immune status. Immunodeficiencies"; study of educational and scientific literature. Work with electronic educational resources located in the electronic information system of DSMU.		
10.	Immunoprophyla xis. Immunotropic therapy.	Preparation for practical exercises - filling in the main drawings and terms of the section "Principles of immunotropic therapy" in the workbook; study of educational and scientific literature. Work with electronic educational resources located in the electronic information system of DSMU. Preparation for testing and testing	2	IW
	TOTAL:		36	
	Preparation for the test	Repetition and consolidation of the studied material (work with lecture material, educational literature); formulation of questions; pre- examination individual and group consultations with the teacher. Work with electronic educational resources located in the electronic information system of DSMU.	2	IW

5.5.2. Subjects of abstract works

N⁰	Partition	Subject
1	1	Immunology as a science. The significance of the works of I.I. Mechnikov.
2	2,3	Factors of innate immunity.
3	4	Antigens of the human body.
4	4	Endogenous immunoregulators.
5	7	Transplantation immunity.
6	8	Antitumor immunity.
7	8	Allergic reactions. Anaphylactic shock
8	10	Immunodeficiencies.
9	10	Autoimmune diseases.
10	10	Immunoprophylaxis and immunotherapy.

5.5.3. Methodical instructions for students on mastering the discipline

The first section of the work program of the discipline was developed as an independent document "Methodological recommendations for the student" in the form of an appendix to the workprogram of the discipline.

VI. ASSESSMENT TOOLS FOR ONGOING PERFORMANCE MONITORING AND INTERMEDIATE CERTIFICATION BASED ON THE RESULTS OF THE DISCIPLINE 6.1. Current monitoring of academic performance

6.1.1. List of competencies indicating the stages of their formation in the process of mastering the work program of the discipline

N⁰	Name of the discipline	Supervised competency	Forms of control
Section	section (module)	code (or part of it)	
1	2	3	4
1.	Immunity. Types of	ID-1 GPC-5	S, T, NW
	immunity. Innate		
	immunity.		
2.	Immune system.	ID-1 GPC-5	S, T, NW
	Immunocompetent cells.		
3.	Antigens. Classification.	ID-1 GPC-5	S, T, NW
	Views. Properties.		
4.	Endogenous	ID-1 GPC-5	S, T, NW, R
	immunoregulators.		
	Humoral and cellular		
	immune response.		
5.	Antibodies. Classes of	ID-1 GPC-5	S, T, NW, R
	immunoglobulins.		
6.	Serological diagnosis of	ID-2 GPC-5	S, T, NW
	infectious diseases.		
7.	Immunological memory.	ID2 GPC-5	S, T, NW
	Features of the immune		
	response in various		
	infections.		
	Immunological tolerance.		
	Transplantation		
	immunity.		
	Antitumor immunity.		
8.	Clinical immunology.	ID-2 GPC-5	S, T, NW, R
	Allergic reactions.		
9.	Immunodeficiencies.	ID-2 GPC-5	S, T, NW
	Methods of studying the		
	immune status.		
10.	Principles of	ID-2 GPC-5	S, T, NW, R
	immunotropic therapy.		
	Immunoprophylaxis.		

6.1.2. Examples of assessment tools for current and milestone control

SECURITY INTERVIEW

<u>SECTION 1.</u> Immunity: Types of immunity. Cellular factors of innate immunity. Topic #1: Immunity. Types of immunity.

Codes of controlled competencies: ID-1 GPC-5

- 1. The modern concept of immunity.
- 2. Types of immunity.
- 3. Congenital (species) immunity.
- 4. Acquired immunity. Views.
- 5. The main differences between congenital and acquired types of immunity.
- 6. What factors are the non-specific protection of the body?
 - 7. Which cells have phagocytic ability?
 - 8. What are the stages of phagocytosis?
 - 9. What happens at each stage of the phagocytic reaction?
 - 10. What is incomplete phagocytosis? Completed?
 - 11. What is a phagocytic number? Phagocytic index? How are they defined?
 - 12. How is the phagocytosis completeness index determined?

Criteria for assessing the current monitoring of academic performance (security interview):

✓ <u>"Excellent":</u>

The student has deep knowledge of the educational material on the topic of the practical lesson, formulated a complete and correct answer to the questions of the topic of the lesson, in compliance with the logic of the presentation of the material, shows the assimilation of the relationship of the basic concepts used in the work, was able to answer all clarifying and additional questions. The student demonstrates knowledge of theoretical and practical material on the topic of the lesson.

✓ <u>"Good":</u>

The student showed knowledge of the educational material, mastered the basic literature, was able to answer almost completely all the additional and clarifying questions asked. The student demonstrates knowledge of theoretical and practical material on the topic of the lesson, allowing minor inaccuracies.

✓ <u>"Satisfactory":</u>

The student as a whole mastered the material of the practical lesson, answered not all clarifying and additional questions. The student finds it difficult to correctly assess the proposed task, gives an incomplete answer that requires leading questions from the teacher.

✓ <u>"Unsatisfactory":</u>

The student has significant gaps in the knowledge of the main educational material of the practical lesson, did not fully disclose the content of the questions, could not answer clarifying and additional questions. The student gives an incorrect assessment of the situation, incorrectly chooses the algorithm of actions. An unsatisfactory grade is given to a graduate who refuses to answer the questions of the topic of the practical lesson.

TESTING

<u>SECTION 2.</u> Immune system: Immunocompetent cells. Topic I am No.4. Lymphoid system.

Codes of controlled competencies: ID-1 GPC-5

1. The central task of immunity:

A) ensuring the genetic integrity of the organism

B) provision of anti-infective protection

- B) rejection of transplanted cells, tissues and organs
- D) implementation of programmed cell death (apoptosis)
- E) ensuring a state of tolerance to "one's own".

2. Acquired immunity is characterized by:

(A) Specificity

- B) formation of antibodies
- C) formation of immunological memory
- D) activation of the endocrine system
- E) erythropoiesis.

3. Phagocytes include:

- A) Macrophages
- B) neutrophils
- C) Th-lymphocytes
- D) NK-cells
- E) B-lymphocytes.
 - 4. Blood bactericidal factors include:
- A) lysozyme
- B) C-reactive protein
- C) complement
- D) Fibrinogen
- E) beta-lysines

5. Lymphopoiesis is carried out by:

- A) in the bone marrow
- B) in the spleen
- B) in the lymph nodes
- D) in Peyer plaques of the intestine
- E) All of the above is true.

6. The main functions of the specific immune response are:

- A) formation of antibodies
- B) accumulation of sensitized lymphocytes
- B) pinocytosis
- D) Phagocytosis
- E) activation of the endocrine system

7. The cell-humoral theory of immunity is substantiated by:

- A) R. Kochom
- B) I. Mechnikov
- B) L. Pasteur

D) P. Ehrlich

E. Bering.

- 8. Features of innate immunity:
- A) is realized only by lymphoid cells
- B) is realized only by myeloid cells
- C) activated only when exposed to antigen
- D) is activated regardless of the ingress of the antigen
- E) forms cells of immunological memory.

9. T-oll-like receptors recognize:

- A) virus antigens
- B) groups of lipids of surface antigens of bacteria
- C) immune complexes
- D) carbohydrate groups of surface antigens of bacteria
- E) superantigens.

10. The skin, as a peripheral part of the immune system, contains:

- A) Dendritic cells
- B) NK cells
- B) B-lymphocytes
- D) Kupffer cages
- E) mast cells.

Criteria for assessing the current monitoring of academic performance (testing):

- ✓ <u>"Excellent":</u> 100-90%
- ✓ <u>"Good":</u> 89-70%
- ✓ <u>"Satisfactory":</u> 69-51%
- ✓ <u>"Unsatisfactory":</u> <50%

PRACTICAL SKILLS

<u>SECTION 1.</u> Immunity: Types of immunity. Cellular factors of innate Immunity.

Topic I 4. Innate Immunity: Factors of Innate Immunity Immunity

Codes of controlled competencies: ID-1 GPC-5

- 1. Research methods in immunology, allergology
- 2. Determination of the index of bactericidal activity of the skin. The principle of the method. Diagnostic value of the method for determining the state of factors of nonspecific resistance of the skin and mucous membranes

Criteria for assessing the current monitoring of academic performance:

✓ <u>"Unsatisfactory":</u>

The student does not know a significant part of the program material, makes mistakes, uncertainly, with great difficulties performs practical tasks.

✓ "<u>Satisfactory":</u>

However, he has not mastered its details, admits inaccuracies, insufficiently correct wording, violates the consistency in the presentation of the program material; owns only a minimum of laboratory research.

✓ <u>"Good":</u>

The student firmly knows the program material, correctly and essentially presents it; does not allow significant inaccuracies when answering questions; correctly applies theoretical provisions in solving practical issues and tasks; has the necessary skills and techniques for their implementation.

✓ <u>"Excellent":</u>

The student has deeply and firmly mastered the program material: fully, consistently, competently, logically presents it. In answering, it closely links theory with practice; is well acquainted with the main literature, is guided in the choice of methods of laboratory diagnosis of infectious diseases to the extent necessary for the practical activities of the doctor, is able to apply knowledge within the framework of the answers presented; connects aspects of the subject with the tasks of practical health care.

ABSTRACT

SECTION 8. Immunopathology.

<u>Codes of controlled competencies: ID-2 GPC-5</u> <u>Topics of abstracts:</u> Allergic reactions. Anaphylactic shock. Immunodeficiencies. Autoimmune diseases.

Criteria for assessing current control (abstract):

- Novelty of the refereed text: max. 20 points;
- Degree of disclosure of the essence of the problem: max. 30 points;
- Validity of the choice of sources: max. 20 points;
- Compliance with the requirements for registration: max. 15 points;
- Literacy: max. 15 points.

Evaluation of the essay:

The abstract is evaluated on a 100-point scale, the points are translated into academic performance assessments as follows (points are taken into account in the process of current assessment of the knowledge of the program material):

- \checkmark 86 100 points "excellent";
- \checkmark 70 75 points "good";
- \checkmark 51 69 points "satisfactory;
- ✓ less than 51 points "unsatisfactory".

INTERVIEWS ON CONTROL QUESTIONS BY DISCIPLINE BLOCKS

SECTION 2. Immune system: Immunocompetent cells.

Topic I am No.4. Lymphoid system. <u>Codes of controlled competencies: ID-1 GPC-5</u>

- 1. Central and peripheral organs of the lymphoid system.
- 2. The principle of organization of the immune system.
- 3. Hematopoietic red bone marrow. Functions.
- 4. Thymus. Functions.
- 5. Peripheral organs of the lymphoid system. Functions.
- 6. Which cells are called "immunocompetent"?
- 7. Characteristics and functions of T-lymphocytes.
- 8. How and where does T lymphocyte differentiation occur?
- 9. Characteristics and functions of B-lymphocytes.
- 10. How and where does the differentiation of B-lymphocytes occur?
- 11. What are the similarities and differences in the functions of T and B lymphocytes?
- 12. What is the role of antigen-presenting cells?
- 13. Describe the NK cells.
- 14. Describe gamma-delta lymphocytes, their features and functions.

Criteria for assessing the current monitoring of progress (interview):

"Unsatisfactory":

 \checkmark Knowledge: the student is not able to independently identify the main provisions in the studied material of the discipline. Does not know or understand much or most of the program material within the questions posed.

✓ Skills: The student does not know how to apply incomplete knowledge to solving specific questions and situational problems according to the model.

Skills: The student does not have practical skills.

"Satisfactory":

 \checkmark Knowledge: the student has mastered the main content of the material of the discipline, but has gaps in the assimilation of the material that do not prevent the further assimilation of the educational material in the discipline "Immunology". Has unsystematized knowledge of the modules of the discipline. The material is presented fragmentarily, not sequentially.

 \checkmark Skills: the student has difficulties in presenting the material on the modules of the discipline "Immunology". The student inconsistently and systematically knows how to use incomplete knowledge of the material. The student finds it difficult to apply the knowledge necessary to solve problems of various situational types, when explaining specific concepts in the sections "Immunology"

 \checkmark Skills: the student has the basic skills, but makes mistakes and inaccuracies in the scientific terminology used and in the answers. The student is basically able to independently make the main points in the material studied.

"Good":

 \checkmark Knowledge: The student is able to independently identify the main provisions in the studied material. Shows knowledge of all the studied program material. Gives a complete and correct answer based on the studied theoretical and practical materials; minor errors and shortcomings in the reproduction of the studied material, definitions of concepts gave incomplete, small inaccuracies when using scientific terms.

 \checkmark Skills: The student is able to independently highlight the main provisions in the studied material; on the basis of facts and examples to generalize, draw conclusions, establish

intra-subject connections. The student is able to use the knowledge gained in practice in a modified situation, to observe the basic rules of the culture of oral speech, to use scientific terms.

 \checkmark Skills: The student has the knowledge of all the studied program material, the material is presented consistently, makes minor mistakes and shortcomings in the reproduction of the studied material. The student does not have sufficient skill in working with reference literature, textbook, primary sources; correctly orients, but works slowly.

"Excellent":

✓ Knowledge: The student independently identifies the main provisions in the studied material and is able to give a brief description of the main ideas of the developed material of the discipline "Immunology". He knows the basic concepts in the sections of obstetrics and gynecology. Shows a deep knowledge and understanding of the entire volume of program material.

Skills: The student is able to make a complete and correct answer on the basis of the material studied, highlight the main provisions, independently confirm the answer with various situational tasks, independently and reasonably make analysis, generalizations, conclusions. To establish interdisciplinary (on the basis of previously acquired knowledge) and intra-subject connections, creatively apply the knowledge gained to solve obstetric problems. Consistently, clearly, coherently, reasonably and accurately present the educational material; give an answer in a logical sequence using the accepted terminology; draw your own conclusions; formulate a precise definition and interpretation of the basic concepts and rules; when answering, do not repeat verbatim the text of the textbook; to present the material in literary language; correctly and thoroughly answer additional questions of the teacher. Independently and rationally use visual aidIWeference materials, a textbook, additional literature, primary sources.

 \checkmark Skills: The student independently identifies the main provisions in the studied material and is able to give a brief description of the main ideas of the developed material. The student shows a deep and complete knowledge of the entire volume of the discipline being studied.

SITUATIONAL TASKS BY SECTIONS OF THE DISCIPLINE

SECTION 6. Serological reactions.

Codes of controlled competencies: ID-2 GPC-5

Task 1

A patient with a high fever was admitted to the clinic. Vidal's reaction is positive in the titer of 1:200 with O - typhoid diagnosis. Your conclusion.

Task 2

In a patient admitted to an infectious diseases clinic with suspected typhoid fever, Vidal's reaction is positive in the dilution of serum 1: 800 with O - diagnosticum and 1: 400 with H - diagnosticum. Do the results of the reaction confirm the alleged diagnosis?

Task 3

The agglutination reaction of the isolated culture of dysentery sticks with specific serums of groups A, B, C, D. A positive reaction was obtained with serum D. Give a conclusion. **Task 4**

A patient with syphilis was admitted to the dermatovenerologic dispensary. How to laboratory confirm the diagnosis?

Task 5

From the laboratory of the dermatovenerologic dispensary, the results of the wasserman reaction of the patient I.S. were obtained.

RSC with cardiolipin antigen is positive. with treponemal antigen - positive. Explain what antigens #1 and 2 are.

Criteria for assessing the current control of academic performance (situational tasks):

"Excellent":

The answer to the question of the problem is given correctly. The explanation of the course of its solution is detailed, consistent, competent, with theoretical justifications (including from the lecture course).

✓ <u>"Good":</u>

 \checkmark

The answer to the question of the problem is given correctly. The explanation of the course of its solution is detailed, but not logical enough, with isolated errors in details, some difficulties in the theoretical justification (including from lecture material), in schematic images and demonstrations on obstetric phantoms, with isolated errors in the use of immunological terms; the answers to additional questions are correct, but not clear enough.

✓ <u>"Satisfactory":</u>

The answer to the question of the problem is given correctly. The explanation of the course of its solution is insufficiently complete, inconsistent, with errors, weak theoretical justification (including lecture material), with significant difficulties and errors in schematic images, demonstrations, in the use of immunological terms; the answers to additional questions are not clear enough, with errors in detail.

✓ <u>"Unsatisfactory":</u>

The answer to the question of the problem is given incorrectly. The explanation of the course of its solution is given incomplete, inconsistent, with gross errors, without theoretical justification (including lecture material); answers to additional questions are incorrect (missing).

TESTING BY DISCIPLINE SECTIONS

SECTION 4. Endogenous immunoregulators.

Codes of controlled competencies: ID-2 GPC-5

1. Activation of the complement system in the classical way is associated with:

- A) with the production of interleukin-2
- B) exposure to interferons
- B) involving an antigen/antibody complex
- D) activation of Toll-like receptors
- E) All of the above is true.

2. Activation of the complement system along the lectin pathway is associated with the action: A) Cytokines of NK-cells

- B) NK cell perforins
- B) Mast Cell Histamine
- D) antibiotic peptides
- E) All of the above is incorrect.

3.Dendritic cells are cells that: A) are formed in the bone marrow B) are formed in the thymus gland

B) perform antigen-presenting function

D) express histocompatibility antigens of class II

E) synthesize antibodies.

4.5.Mark the stages of phagocytosis:

A) Adhesion

B) hemolysis

- B) agglutination
- D) chemotaxis
- E) endocytosis

25. Mucous membranes secrete:

A) lysozyme

B) Ig A

C) IgE

D) beta-lysine

E) complement.

6. Natural immunity of newborns is formed as a result of:

(A) Vaccination

B) administration of immune serums

- C) transmission of antibodies from mother to fetus
- D) antibiotic therapy
- E) All of the above is true.
 - 7. After the introduction of antitoxic therapeutic and prophylactic serum immunity is formed:
- A) Active
- B) passive
- B) Artificial
- D) antimicrobial
- E) congenital.

8.Acquired active immunity occurs after the introduction into the body:

- A) Attenuated vaccine
- B) probiotics
- B) toxoids
- D) antitoxic serum
- E) antibiotics.

9.In the implementation of the functions of adaptive immunity take part:

- A) Immunological memory cells
- B) Dendritic cells
- B) NK cells
- D) immunoglobulins
- E) All of the above is true.

10.Possible ways to activate complement:

- A) Anaerobic
- B) Classic
- (B) Alternative

D) lectin

E) lactose

11.Note the signs characteristic of the complement system:

- A) refers to serum proteins
- B) activated by a cascade of proteolysis reactions
- C) is only present in humans
- D) specific to the antigen
- E) refers to interleukins.

12. The mechanism of complement activation by the classical path is related to:

- A) involving an antigen-antibody complex
- B) with the participation of the protein properdin
- B) with the action of antibiotics
- D) with recognition of mannose-binding lectin
- E) involving Ig-E.

Criteria for assessing the current monitoring of academic performance (tests):

- ✓ <u>"Excellent":</u> 100-90%
- ✓ <u>"Good":</u> 89-70%
- ✓ <u>"Satisfactory":</u> 69-51%
- ✓ <u>"Unsatisfactory":</u> <50%
- .

6.2. INTERMEDIATE CERTIFICATION BASED ON THE RESULTS OF MASTERING THE DISCIPLINE

- 6.2.1. Form of intermediate certification Zachet. Semester IV
- 6.2.2. Procedure for intermediate certification Withexamination

6.2.3. Examples of questions for preparing for the set-off

- 1. The modern concept of immunity.
- 2. Types of immunity.
- 3. Congenital (species) immunity.
- 4. Acquired immunity. Views.
- 5. The main differences between congenital and acquired types of immunity.
- 6. What factors are the non-specific protection of the body?
- 7. Which cells have phagocytic capacity?
- 8. What are the functions of phagocytic cells?
- 9. What are the stages of phagocytosis?
- 10. What happens at each stage of the phagocytic reaction?
- 11. What is incomplete phagocytosis? Completed?
- 12. What is a phagocytic number? Phagocytic index? How are they defined?
- 13. How is the phagocytosis completeness index determined?
- 14. Primary receptors for preimmune resistance.
- 15. Humoral factors of innate immunity.
- 16. Acute phase proteins
- 17. What is lysozyme? Method of determining lysozyme in saliva.
- 18. Complement, ways to activate complement. Biological role.
- 19. Similarities and differences in complement activation pathways.
- 20. Interferons. Variety. Functions.
- 21. Central and peripheral organs of the lymphoid system.

- 22. The principle of organization of the immune system.
- 23. Hematopoietic red bone marrow. Functions.
- 24. Thymus. Functions.
- 25. Peripheral organs of the lymphoid system. Functions.
- 26. Which cells are called "immunocompetent"?
- 27. Characteristics and functions of T-lymphocytes.
- 28. How and where does T lymphocyte differentiation occur?
- 29. Characteristics and functions of B-lymphocytes.
- 30. How and where does the differentiation of B-lymphocytes occur?
- 31. What are the similarities and differences in the functions of T and B lymphocytes?
- 32. What is the role of antigen-presenting cells?
- 33. Describe the NK cells.
- 34. What is an antigen? Give a definition.
- 35. Properties of antigens: antigenicity, foreignness, immunogenicity, specificity.

Codes of controlled competencies: ID-1, ID-2 GPC-5

FSBEI HE DGMU

Ministry of Health of Russia

Department of Microbiology, Virology and Immunology in the direction of training 31.05.01 General Medicine Discipline – Immunology

EXAM CARD No _____

- 1. History of immunology
- 2. Immunological memory: nature, biological significance. Differences between primary and secondary immune response
- 3. ROME, the principle of diagnostic value

Approved at the department, minutes dated "29" June 2022 Minutes No. 18

Omarova S.M. Doctor of Biological Sciences, Professor, Head of the Department of Microbiology, Virology and Immunology

 $\label{eq:Isaeva} Isaeva \ R.I.-Associate \ professor \ of \ the \ Department \ of \ Microbiology, \ Virology \ and \ Immunology$

Saidova B.M. - Associate professor of the Department of Microbiology, Virology and Immunology

Compilers: Omarova S.M. d. B.Sc., Associate Professor, Associate Professor Department of Microbiology, Virology and Immunology ___

Korkmasova M.A. Ph.D., Associate Professor of the Department microbiology, virology and immunology ____

"____"

FSBEI HE DGMU

Ministry of Health of Russia

Department of Microbiology, Virology and Immunology in the direction of training 31.05.01 General Medicine Discipline – Immunology

EXAM CARD No _____

- 1. Antigen, definition, properties of antigen
- 2. Immunological tolerance, definition, species, biological significance
- 3. ELISA, the principle of application for the diagnosis of infectious diseases

Approved at the department, minutes dated "29" June 2022 Minutes No. 18

Omarova S.M. Doctor of Biological Sciences, Professor, Head of the Department of Microbiology, Virology and Immunology

Isaeva R.I. – Associate professor of the Department of Microbiology, Virology and Immunology

Saidova B.M. - Associate professor of the Department of Microbiology, Virology and Immunology

Compilers: Saidova B.M. Ph.D., Associate Professor, Associate Professor Department of Microbiology, Virology and Immunology ___

Korkmasova M.A. Ph.D., Associate Professor of the Department microbiology, virology and immunology ____

"___"___

Evaluation	E	Evaluation criteria			
indicators	"not counted"	"credited"			
	ID-1 GPC-5				
To know	The student is not capable of abstract thinking Does not know the basics of immunology	The student independently identifies the main provisions in the studied material and is able to give a brief description of the main ideas of the developed material of the discipline. Knows the subject, immunity, antigens, antibodies and other concepts of discipline. Shows a deep understanding of the subject of immunology.			
can	The student does not know how to analyze the basic provisions of immunology	The student is able to use educational, scientific, popular science literature on the subject.			
possess	The student does not know the basic basics of the subject	The student shows a deep and complete knowledge of the entire volume of the discipline studied, owns knowledge of immunology.			
	ID-2 (GPC-5			
To know	The student is not capable of self-development and independent assimilation of the subject	The student independently fulfills the basic requirements for maintaining protocols of immunological studies			
can	The student does not know how to independently state the basic concepts of immunology	The student knows and is able to apply allimmunological research methods.			
possess	The student does not know the basic basics of immunology	The student fully owns the entire volume of the discipline being studied. Can use the received material on the subject.			

6.2.5. The system of assessing the results of mastering the discipline, announcing the scales of assessment, grading.

VII. EDUCATIONAL - METHODOLOGICAL AND INFORMATION SUPPORT OF DISCIPLINE

7.1. Main literature

Print

Nº	Name of the publication	Number of instances in a library
1.	Khaitov, R. M. Immunology: Textbook for universities with a CD	100
	M.: GEOTAR - Media, 2011 - 320 p.	1.0.0
	1. Immunology and allergology / textbook for medical universities	100
2.	// Ed. by A.A. Vorobyov, A.S. Bykov, A.V. Karaulova.– M.,	
	Practical Medicine. – 2006. – 287 p.	
3.	Medical Microbiology, Virology, Immunology / Ed. by Prof. L. B.	650
5.	Borisova. Textbook M.: Meditsina, 2001, 2002, 2005 528 p.	

Electronic publications			
N⁰	Name of the publication		
1.	Medical Microbiology, Virology and Immunology: in 2 vols. Volume 1. / ed. by V.V. Zverev, M.N. Boychenko M. : GEOTAR-Media, 2016. – 447 p. // Student consultant: student electronic library: electronic library system. – Moscow, 2019. – Access by password URL: http://www.studmedlib.ru/book/ISBN9785970436417.html		
2.	Medical microbiology, virology and immunology. In 2 vols. Volume 2. / ed. by V.V. Zverev, M.N. Boychenko M. : GEOTAR-Media, 2016. – 447 p. // Student consultant: student electronic library: electronic library system. – Moscow, 2019. – Access by password URL: http://www.studmedlib.ru/book/ISBN9785970436424.html		

7.2. Additional literature

	Print			
N⁰	Name of the publication	Number of		
		instances in a		
		library		
	Drannik, G.N. Clinical immunology and allergoldogy: for student	100		
1.	courses, doctors, immunologists, allergists /G.N.DrannikM:MIA,			
	203604 p.			
2.	Khaitov, R.M. Immunology: Atlas/ R.M.Khaitv, A.A.Yarilin,	25		
۷.	B.V.Pnegin// -M.:GEOTAR-Media, 2011624 p.			
3.	A Guide to Practical Exercises in Microbiology, Immunology and	20		
	Virology with Illustrated Tasks // pod. ed. by A.A.Vorobyov and			
	V.N.Tsarev – M., MIA – 2007. – 470 p.			
4.	2. Playfair J. Visual immunology. Lane M GEOTAR	5		
	Medicine, 2000 95 p.			
5.	Medical Microbiology, Virology and Immunology / textbook ed. by	60		
	Prof. A.A. Sboychakova V.BSPb., M2008532 P.			

Electronic publications

N⁰	Name of the publication
	Microbiology, Virology and Immunology: A Guide to Laboratory Studies / ed. by
	V.B. Sboychakov, M.M. Karapats M. : GEOTAR-Media, 2015. (Doctor-specialist's
1.	library) // Consultant doctor: electronic medical library: electronic library system. –
	Moscow, 2019. – Access by password. – URL:
	http://www.studmedlib.ru/book/ISBN9785970435755.html.
2.	Microbiology, Virology and Immunology: A Guide to Laboratory Studies / ed. by
	V.B. Sboychakov, M.M. Karapats M. : GEOTAR-Media, 2014. (Doctor-specialist's
	library) // Consultant doctor: electronic medical library: electronic library system
	Moscow, 2019. – Access by password. – URL:
	http://www.studmedlib.ru/book/ISBN9785970430668.html.
3.	Microbiology, Virology: A Guide to Practical Exercises: Studies. posobie / pod red.
	V.V. Zvereva, M.N. Boychenko - M. : GEOTAR-Media, 2015. (Specialist Doctor's
	Department) // Consultant doctor: electronic medical library: electronic library
	system. – Moscow, 2019. – Access by password. – URL:
	http://www.studmedlib.ru/book/ISBN9785970434956.html.

4.	Fundamentals of Microbiology and Immunology / ed. by V.V. Zverev, M.N.
	Boychenko - M. : GEOTAR-Media, 2014. (Doctor-specialist's library) // Consultant
	doctor: electronic medical library: electronic library system. – Moscow, 2019. –
	Access by password. – URL:
	http://www.studmedlib.ru/book/ISBN9785970429334.html.
5.	Microbiology and immunology. Practicum: study. posobie / R. T. Mannapova - M. :
	GEOTAR-Media, 2013. (Doctor-specialist's library) // Consultant doctor: electronic
	medical library: electronic library system. – Moscow, 2019. – Access by password. –
	URL:http://www.studmedlib.ru/book/ISBN9785970427507.html.

7.3 Resources of the information and telecommunication network "Internet"

N⁰	Resource name		
	For example:		
1.	Electronic Library: Dissertation Library: Website / Russian State Library. – Moscow:		
1.	RSL, 2003. – URL: <u>http://diss.rsl.ru/?lang=ru</u> (date of access: 25.01.2019). – Text:		
	electronic.		
2.	Government of the Russian Federation: official website Moscow Updated during		
۷.	the day. – URL: <u>http://government.ru</u> (date of access: 2019-02-19). – Text: electronic.		
3.	Electronic library system "Student Consultant". Access mode: limited by login and		
	password; http://www.studmedlib.ru		
4.	Electronic library system "Doctor's Consultant". Access mode: limited by login and		
	password; http//www.rosmedlib.ru		
5.	State Central Scientific Medical Library; http://www.scsml.ru//		
6.	Federal Electronic Medical Library		
7.	Scientific electronic library "CYBERLENINKA"		

7.4. Information Technologies

Software:

- 1. Microsoft Windows 10 Pro Operating System
- 2. Application packages:

Microsoft Office Standard 2016

It consists of:

Microsoft Word 2016, Microsoft Excel 2016, Microsoft Power Point 2016

3. Antivirus software – Kaspersky Endpoint Security 10 for Windows.

List of information help systems:

- 1. Electronic information and educational environment (LMS) of DSMU. URL: https://lms.dgmu.ru/
- 2. Student Advisor: Electronic Library System. URL: http://www.studentlibrary.ru
- 3. Physician Consultant: Electronic Library System. URL: http://www.rosmedlib.ru
- 4. Federal Electronic Medical Library (FEMB). URL: http://feml.scsml.rssi.ru
- 5. Scientific electronic library eLibrary. URL: https://elibrary.ru/defaultx.asp
- 6. Medical reference and information system. URL: http://www.medinfo.ru/
- 7. Scientific electronic library CyberLeninka. URL: http://cyberleninka.ru
- 8. Electronic library of the Russian Foundation for Basic Research. URL: http://www.rfbr.ru/
- 9. All-Russian educational Internet program for doctors. URL: http://www.internist.ru

VIII. MATERIAL AND TECHNICAL SUPPORT OF DISCIPLINE	VIII.	MATERIAL AND	TECHNICAL	SUPPORT OI	F DISCIPLINE
--	-------	--------------	-----------	------------	--------------

No p/n	View of the room with room (classroom, laboratory, computer class) indicating the address (location) of the building, clinical base, structure, structure, premises, area of the room, its purpose.	Name of equipment
1.	Study room No1 (28 ^{m2}) St. Sh. Aliyev 1, 3rd floor. Forpracticalclasses, current control.	Laboratory tables for microbiological research. Cabinet with microscopes and special tools for practical exercises. Tables, diagrams.
2.	Study room No2 (46,5m2) St. Sh. Aliyev 1, 3rd floor. For practical training, current control. Electronic training, lecture classes.	Laboratory tables for microbiological research. Cabinet with microscopes and special tools for practical exercises. Tables, diagrams. Multimedia complex (laptop, projector, screen)
3.	Study room No3 (49 ^{m2}) St. Sh. Aliyev 1, 3rd floor. For practical training, current control.	Laboratory tables for microbiological research. Cabinet with microscopes and special tools for practical exercises. Tables, diagrams. Multimedia complex (laptop, projector, screen).
4.	Study room No4 (49 ^{m2}) St. Sh. Aliyev 1, 3rd floor. For practical training, current control, intermediate certification.	Laboratory tables for microbiological research. Cabinet with microscopes and special tools for practical exercises. Tables, diagrams.
5.	Study room No5 (63m ²) St. Sh. Aliyev 1, 3rd floor. For practical training, current control.	Laboratory tables for microbiological research. Cabinet with microscopes and special tools for practical exercises. Tables, diagrams. Multimedia complex (laptop, projector, screen).
6.	 Study room No6 (28^{m2}) St. Sh. Aliyev 1, 3rd floor. For practical training, current control. 	Laboratory tables for microbiological research. Cabinet with microscopes and special tools for practical exercises. Tables, diagrams.
7.	Laboratory (24 ^{m2}) St. Sh. Aliyev 1, 3rd floor. For laboratory work to practical exercises	Laboratory tables for microbiological research. Cabinet with dry nutrient media and reagents.
8.	Reading Room of the Scientific Library of DSMU St. Sh. Aliyeva1, 1st floor. For independent work.	Table, chairs, educational and scientific literature, computers with Internet access

IX. USE OF INNOVATIVE (ACTIVE AND INTERACTIVE) TEACHING METHODS

The active teaching methods used in the study of this discipline account for 5.5% of the volume of classroom classes.

- 1. Use the electronic text of lectures in the form of a word text editor document.
- 2. Use presentations made in Power Point.
- 3. Use of videos.

NC			T 1 ' 4 '4
N⁰	Name of the section	Type, name of the topic of the lesson using the	Labor intensity
	(list those sections in	forms of active and interactive teaching	(hour)
	which active and / or	methods	
	interactive forms		
	(methods) of training		
1	are used)		2
1.	Antigens.	L.3. Antigens, properties. Microbial	2
	Classification. Views.	antigens. Antigens of microorganisms.	
	Properties.	Antigens of the main histocompatibility	
	Antibodies. Classes	complex.	
	of immunoglobulins.		1 -
2.	Endogenous	L.4. Humoral and cellular immune response.	1,5
	immunoregulators.	Antibodies, classes of immunoglobulins,	
	Humoral and	their characteristics. Hormones and	
	cellular immune	mediators of the immune system.	
	response.		
3.	Clinical	L.5. Features of the immune response in	1,5
	immunology.	various conditions. Immune response in	
	Immunological	bacterial, protozoal, fungal and viral	
	memory.	infections. Immunological memory.	
	Immunological	Immunological tolerance. Transplantation	
	tolerance.	and antitumor immunity.	
4.	Methods of studying	L.6. Immune status. Congenital and acquired	1
	the immune status.	immunodeficiencies. Methods of detection	
	Immunodeficiencies.	and correction.	
	Autoimmune		
	reactions and		
	diseases.		
5.	Allergic reactions.	L.7. Immunopathology. Immunological	1
		hypersensitivity (allergy). Autoimmune	
		reactions and diseases.	
	TOTAL		9

X. METODIC PROVISION OF DISCIPLINE

Methodological support of the discipline hasbeen developed in the form of a separate set of documents: "Methodological recommendations for lectures", "Methodological recommendations for practical classes", "Methodological recommendations for the student" in the form of an appendix towhose program of the discipline

XI.FEATURES OF THE ORGANIZATION OF DISCIPLINE TRAINING FOR PERSONS WITH DISABILITIES AND PERSONS WITH DISABILITIES

1 1.1. Education of disabled persons and persons with disabilities

If necessary, it is carried out by the department on the basis of an adapted work program using special teaching methods and didactic materials compiled taking into account the characteristics of psychophysical development, individual capabilities and the state of health of such students (students).

1 1.2. In order to master the curriculum of the discipline by disabled people and persons with disabilities, the department provides:

1) for disabled persons and persons with visual disabilities:

• placement in places accessible to students who are blind or visually impaired and in an adapted form of reference information on the schedule of training sessions;

• the presence of an assistant who provides the necessary assistance to the student;

• production of alternative formats of methodological materials (large print or audio files);

2) for persons with disabilities and persons with hearing disabilities:

• appropriate sound means of reproducing information;

3) for disabled persons and persons with disabilities who have disorders of the orno-motor apparatus:

• the possibility of unhindered access of students to educational premises, toilets and other premises of the department. In case of impossibility of unhindered access to the department, organize the educational process in a specially equipped center for individual and collective use of special technical means of training for disabled people and persons with disabilities (1 A. Aliyev Str., biological building, 1st floor).

11.3. Education of students with disabilities can be organized both jointly with other students and in separate groups.

1 1.4. The list of educational and methodological support for the independent work of students in the discipline.

Educational and methodological materials for the independent work of students from among the disabled and persons with disabilities are provided in forms adapted to the limitations of their health and perception of information:

Categories of students	Form		
hearing impairment	- in printed form;		
	- in the form of an electronic document		
Visually impaired	- in printed form in an enlarged font;		
	- in the form of an electronic document;		
	- in the form of an audio file		
With a violation of the op orno-motor apparatus	- printed form;		
	- in the form of an electronic document		

This list can be specified depending on the contingent of students.

1 1.5. Evaluation Funds Fund for Intermediate Certification of Students in the Discipline.

11.5.1. List of evaluation funds correlated with the planned results of the development of the educational program.

For students with disabilities

Categories of students	Types of valuation tools	Forms of monitoring and evaluation of learning outcomes
Hearing impaired	test	predominantly written verification
Visually impaired	interview	mainly oral inspection (individually)
With a violation of the op orno-motor apparatus	solution of remote tests, control inopdew	organization of control in LMS DSMU, written verification

Students with disabilities and persons with disabilities are given an increase in the time for preparing answers to the test, and are allowed to prepare for the test using distanceeducational technologies.

11.5.2. Methodical materials that describe the procedures for assessing knowledge, skills, abilities and (or) activities that characterize the stages of the formation of competencies.

In carrying out the procedure for assessing the learning outcomes of persons with disabilities and persons with disabilities, it is envisaged to use the technical means necessary for them in connection with their individual characteristics.

The procedure for assessing the learning outcomes of persons with disabilities and persons with disabilities in the discipline provides for the provision of information in forms adapted to the limitations of their health and perception of information:

For visually impaired persons:

- in printed form in an enlarged font;

- in the form of an electronic document;

- in the form of an audio file.

For people with hearing impairments:

- in printed form;

- in the form of an electronic document.

For persons with disorders of the orno-motor system:

- in printed form;

- in the form of an electronic document;

- in the form of an audio file.

This list can be specified depending on the contingent of students.

When conducting the procedure for assessing the results of training of disabled persons and persons with disabilities in the discipline (module), the followinglegal requirements are met, depending on the individual characteristics of the students:

1. instructions on the procedure for conducting the assessment procedure shall be provided in an accessible form (orally, in writing, orally using the services of asurd operator);

2. an accessible form for providing tasks of evaluation tools (in printed form, in printed form in an enlarged font, in the form of an electronic document, the tasks are read out by the assistant, the tasks are provided using the surd op erevoda);

3. an accessible form for providing answers to tasks (written on paper, a set of answers on a computer, using the services of an assistant, orally).

If necessary, for students with disabilities and people with disabilities, the procedure for assessing the results of training in the discipline (module) can be carried out in several stages.

The procedure for assessing the learning outcomes of persons with disabilities and persons with disabilities is carried out using distance educational technologies.

1 1.6. List of basic andeducationalliterature necessary for the development of the discipline.

For the development of the discipline by persons with disabilities and persons with disabilities, basic educational literature is provided in the form of an electronic document in the library fund and / or in electronic library systems. As well as special textbooks and teaching aids, other educational literature and special technical means of training for collective and individual use, as well as the services of surdsof teachers and typhlosurd oeredivists.

1 1.7. Methodical instructions for students on mastering the discipline

In the development of discipline by disabled people and persons with disabilities, individual work is of great importance. Individual work means two forms of interaction with the teacher: individual educational work (consultations), i.e.individual clarification of the educational material and in-depth study of the material with those students who are interested in this, and individual educational work. Individual consultations on the subject are an important factor contributing to the individualization of training and the establishment of educational contact between the teacher and students with disabilities or students with disabilities.

11.8. Developmentof the material and technical base necessary for the implementation of the educational process in the discipline

The development of the discipline by disabled persons and persons with disabilities is carried out using the means of general and special purpose training:

- lecture hall - multimedia equipment, mobile radio class (for students with hearing impairments); power supplies for individual technical means;

- classroom for practical classes (seminars), multimedia equipment, mobile radio class (for students with hearing impairments);

- training room for independent work - standard workplaces with personal computers; workplace with a personal computer, with a screen access program, a screen zoom program and a braille display for students with visual impairment.

In each auditorium where disabled persons and persons with disabilities study, an appropriate number of places for students should be provided, taking into account their health limitations.

XII.	CHANGE SHEET
------	---------------------

	RP updated at the meeting of the department		
Listof issuesand changes made to the work	Date	Number of	Signature of
program of the discipline		minutes of the	the Head of the
program of the discipline		meeting of the	Department
		department	
the following changes are made to the work			
program			
1;			
2 etc.			
or a note is made that it is not advisable to make			
any changes for this academic year			